Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solving Equations A Solution A value of the variable that makes the equation a true statement.

Similar presentations


Presentation on theme: "Solving Equations A Solution A value of the variable that makes the equation a true statement."— Presentation transcript:

1 Solving Equations A Solution A value of the variable that makes the equation a true statement

2 Equations Example: x + 2 = 5 TRUE if x = 3 FALSE if x = anything else The Solution is x = 3

3 Special Cases Example: x = x + 1 NEVER TRUE No such number exists Called a contradiction

4 Special Cases Example: 2x = x + x ALWAYS TRUE True for any number Called an identity

5 Equivalent Equations Have the same solution Example:x + 2 = 5 x – 1 = 2 x + 4 = 7 All have solution x = 3

6 Addition Principle Adding (or subtracting) the same number to both sides of an equation does not change its solution.

7 Addition Principle Example: 6 + x = x = x = 11 Are equivalent equations Both have the same solution

8 Addition Principle Example: 6 + x = 8 -6 x = 2 Equivalent equation that shows the solution

9 Multiplication Principle Multiplying (or dividing) same non-zero number to both sides of an equation does not change its solution.

10 Multiplication Principle Example: 6x = x = x = 36 Are equivalent equations Both have the same solution

11 Multiplication Principle Example: 6x = 12 6x  6 = 12  6 x = 2 Equivalent equation that shows the solution

12 Multiplication Principle Example:

13 Multiplication Principle Another Way:

14 Using Both Principles Usually best to use Addition Principle first.

15 Using Both Principles Example: 2x – 3 = 7 First add 3: 2x = 10 Then  2: x = 5


Download ppt "Solving Equations A Solution A value of the variable that makes the equation a true statement."

Similar presentations


Ads by Google