Download presentation

Presentation is loading. Please wait.

1
**Angles and Parallel Lines**

G.2a Angles and Parallel Lines

2
Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal. When a transversal t intersects line n and m, eight angles of the following types are formed: Linear Pair & Vertical Angles still apply! + Corresponding Angles Alternate Angles Consecutive Angles t m n

3
**Vertical Angles & Linear Pair**

Two angles that are opposite angles. Vertical angles are congruent. 1 4, 2 3, 5 8, 6 7 Supplementary angles that form a line (sum = 180) 1 & 2 , 2 & 4 , 4 &3, 3 & 1, 5 & 6, 6 & 8, 8 & 7, 7 & 5 1 2 3 4 5 6 7 8

4
**Angles and Parallel Lines**

If two parallel lines are cut by a transversal, then the following pairs of angles are congruent. Corresponding angles Alternate interior angles Alternate exterior angles If two parallel lines are cut by a transversal, then the following pairs of angles are supplementary. Consecutive interior angles Consecutive exterior angles Continued…..

5
Corresponding Angles Corresponding Angles: Two angles that occupy corresponding positions. 2 6, 1 5, 3 7, 4 8 1 2 3 4 5 6 7 8

6
Alternate Angles Alternate Interior Angles: Two angles that lie between parallel lines on opposite sides of the transversal (but not a linear pair). Alternate Exterior Angles: Two angles that lie outside parallel lines on opposite sides of the transversal. 3 6, 4 5 2 7, 1 8 1 2 3 4 5 6 7 8

7
Consecutive Angles Consecutive Interior Angles: Two angles that lie between parallel lines on the same sides of the transversal. Consecutive Exterior Angles: Two angles that lie outside parallel lines on the same sides of the transversal. m3 +m5 = 180º, m4 +m6 = 180º 1 2 m1 +m7 = 180º, m2 +m8 = 180º 3 4 5 6 7 8

8
Example: If line AB is parallel to line CD and s is parallel to t, find the measure of all the angles when m< 1 = 100°. Justify your answers. t 16 15 14 13 12 11 10 9 8 7 6 5 3 4 2 1 s D C B A m<2=80° m<3=100° m<4=80° m<5=100° m<6=80° m<7=100° m<8=80° m<9=100° m<10=80° m<11=100° m<12=80° m<13=100° m<14=80° m<15=100° m<16=80°

9
**If line AB is parallel to line CD and s is parallel to t, find: **

Example: 1. the value of x, if m<3 = 4x + 6 and the m<11 = 126. 2. the value of x, if m<1 = 100 and m<8 = 2x + 10. 3. the value of y, if m<11 = 3y – 5 and m<16 = 2y + 20. t 16 15 14 13 12 11 10 9 8 7 6 5 3 4 2 1 s D C B A ANSWERS: 1. 30 2. 35 3. 33

Similar presentations

Presentation is loading. Please wait....

OK

Parallel Lines and Transversals

Parallel Lines and Transversals

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on latest gadgets used at home Ppt on history of badminton in the olympics Ppt on democracy in contemporary world class 9 Ppt on origin of numbers Microsoft office ppt online shopping Ppt on standardization and grading Ppt on application of linear algebra in computer graphics Animated ppt on human digestive system Ppt on different forms of power sharing in india Ppt on job evaluation system