Download presentation

1
Chapter 7 Atomic Structure Dr. S. M. Condren

2
**ELECTROMAGNETIC RADIATION**

Dr. S. M. Condren

3
**Electromagnetic Spectrum**

Dr. S. M. Condren

4
**Electromagnetic Radiation**

Electromagnetic wave A wave of energy having a frequency within the electromagnetic spectrum and propagated as a periodic disturbance of the electromagnetic field when an electric charge oscillates or accelerates. Dr. S. M. Condren

5
**Electromagnetic Radiation**

Electromagnetic wave wavelength frequency amplitude Dr. S. M. Condren

6
**Electromagnetic Radiation**

Figure 7.1 Dr. S. M. Condren

7
**Wave motion: wave length and nodes**

Dr. S. M. Condren

8
**Wave Nature of the Electron**

Dr. S. M. Condren

9
**Electromagnetic Radiation**

Waves have a frequency Use the Greek letter “nu”, , for frequency, and units are “cycles per sec” Use the Greek letter “lambda”, l, for wavelength, and units are “meters” All radiation: • = c c = velocity of light = 3.00 x 108 m/sec Long wavelength --> small frequency Short wavelength --> high frequency Dr. S. M. Condren

10
**Electromagnetic Radiation**

Long wavelength --> small frequency Short wavelength --> high frequency increasing frequency increasing wavelength Dr. S. M. Condren

11
Fireworks Dr. S. M. Condren

12
Flame Tests Dr. S. M. Condren

13
**The Electric Pickle Excited atoms can emit light.**

Here the solution in a pickle is excited electrically. The Na+ ions in the pickle juice give off light characteristic of that element. Dr. S. M. Condren

14
**Line Emission Spectrum**

Dr. S. M. Condren

15
**Electromagnetic Radiation**

Example: Calculate the frequency, n, of red light that has a wavelength, l, of 700. nm. = (1/700. nm)(109nm/1m)(3.00x108m/sec) = 4.29x1014 s-1 = 4.29x1014 cycles/s = 4.29x1014 hertz Dr. S. M. Condren

16
**Electromagnetic Radiation**

Short wavelength --> high frequency high energy Long wavelength --> small frequency low energy Dr. S. M. Condren

17
**Black Body Radiation http://www.cbu.edu/~mcondren/C11599/BBvis.mov**

Dr. S. M. Condren

18
**Experiment demonstrates the particle nature of light.**

Photoelectric Effect Experiment demonstrates the particle nature of light. Dr. S. M. Condren

19
**Energy of Radiation Energy of 1.00 mol of photons of red light.**

E = h• = (6.63 x J•s)(4.29 x 1014 s-1) = x J per photon E per mol = (2.85 x J/ph)(6.02 x 1023 ph/mol) = kJ/mol This is in the range of energies that can break bonds. Dr. S. M. Condren

20
Spectra Line Spectrum A spectrum produced by a luminous gas or vapor and appearing as distinct lines characteristic of the various elements constituting the gas. Emission Spectrum The spectrum of bright lines, bands, or continuous radiation characteristic of and determined by a specific emitting substance subjected to a specific kind of excitation. Absorption Spectrum Wavelengths of light that are removed from transmitted light. Dr. S. M. Condren

21
**Atomic Line Emission Spectra**

and Niels Bohr Bohr’s greatest contribution to science was in building a simple model of the atom. It was based on an understanding of the SHARP LINE EMISSION SPECTRA of excited atoms. Niels Bohr ( ) Dr. S. M. Condren

22
**Energy of state = - C/n2 Atomic Spectra and Bohr**

Bohr said classical view is wrong. e- can only exist in certain discrete orbits — called stationary states. e- is restricted to QUANTIZED energy states. Energy of state = - C/n2 where n = quantum no. = 1, 2, 3, 4, .... Dr. S. M. Condren

23
Bohr Atom Dr. S. M. Condren

24
**Energy States Ground State**

The state of least possible energy in a physical system, as of elementary particles. Also called ground level. Excited States Being at an energy level higher than the ground state. Dr. S. M. Condren

25
**Energy Adsorption/Emission**

Active Figure 7.11 Dr. S. M. Condren

26
**Atomic Spectra and Bohr**

C has been found from experiment (and is now called R, the Rydberg constant) R (= C) = kJ/mol or 3.29 x 1015 cycles/sec so, E of emitted light = (3/4)R = x 1015 sec-1 and l = c/n = nm This is exactly in agreement with experiment! Dr. S. M. Condren

27
**Line Emission Spectra of Excited Atoms**

High E Short High Low E Long Low Visible lines in H atom spectrum are called the BALMER series. Dr. S. M. Condren

28
**Origin of Line Spectra Balmer series Active Figure 7.12**

Paschen series Balmer series Active Figure 7.12 Dr. S. M. Condren

29
**Atomic Line Spectra and Niels Bohr**

Bohr’s theory was a great accomplishment. Rec’d Nobel Prize, 1922 Problems with theory — theory only successful for H. introduced quantum idea artificially. So, we go on to QUANTUM or WAVE MECHANICS Niels Bohr ( ) Dr. S. M. Condren

30
**Quantum or Wave Mechanics**

Schrodinger applied idea of e- behaving as a wave to the problem of electrons in atoms. He developed the WAVE EQUATION Solution gives set of math expressions called WAVE FUNCTIONS, Each describes an allowed energy state of an e- Quantization introduced naturally. E. Schrodinger Dr. S. M. Condren

31
WAVE FUNCTIONS, •is a function of distance and two angles. • Each corresponds to an ORBITAL — the region of space within which an electron is found. • does NOT describe the exact location of the electron. • 2 is proportional to the probability of finding an e- at a given point. Dr. S. M. Condren

32
**Uncertainty Principle**

Problem of defining nature of electrons solved by W. Heisenberg. Cannot simultaneously define the position and momentum (=m*v) of an electron. We define e- energy exactly but accept limitation that we do not know exact position. W. Heisenberg Dr. S. M. Condren

33
Types of Orbitals s orbital p orbital d orbital Dr. S. M. Condren

34
**Orbitals s orbitals p orbitals d orbitals f orbitals**

No more than 2 e- assigned to an orbital Orbitals grouped in s, p, d (and f) subshells s orbitals also p orbitals d orbitals f orbitals Dr. S. M. Condren

35
**1 3 5 7 2 6 10 14 s orbitals p orbitals d orbitals f orbitals**

No. orbs. 1 3 5 7 No. e- 2 6 10 14 Dr. S. M. Condren

36
**n (principal) => shell l (angular) => subshell **

QUANTUM NUMBERS The shape, size, and energy of each orbital is a function of 3 quantum numbers: n (principal) => shell l (angular) => subshell ml (magnetic) => designates an orbital within a subshell s (spin) => designates the direction of spin Dr. S. M. Condren

37
**Symbol Values Description **

QUANTUM NUMBERS Symbol Values Description n (principal) 1, 2, 3, .. Orbital size and energy where E = -R(1/n2) l (angular) 0, 1, 2, .. n-1 Orbital shape or type (subshell) ml (magnetic) -l..0..+l Orbital orientation # of orbitals in subshell = 2 l + 1 s (spin) -1/2 or +1/2 Direction of spin of electron Dr. S. M. Condren

38
**Types of Atomic Orbitals**

Dr. S. M. Condren

39
Atomic Orbitals Types of orbitals found in the known elements: s, p, d, and f schools play defensive football Packer version: secondary pass defense fails Dr. S. M. Condren

40
S Orbitals 1s 2s 3s Dr. S. M. Condren

41
**p Orbitals The three p orbitals lie 90o apart in space**

Dr. S. M. Condren

42
3px Orbital 2px Orbital Dr. S. M. Condren

43
**d Orbitals 3dxy Orbital 3dxz Orbital 3dyz Orbital 3dx2- y2 Orbital**

3dz2 Orbital Dr. S. M. Condren

Similar presentations

OK

Chapter 5 “Electrons in Atoms”. Section 5.3 Physics and the Quantum Mechanical Model l OBJECTIVES: Describe the relationship between the wavelength and.

Chapter 5 “Electrons in Atoms”. Section 5.3 Physics and the Quantum Mechanical Model l OBJECTIVES: Describe the relationship between the wavelength and.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google