Download presentation

Presentation is loading. Please wait.

Published byWilliam Glass Modified over 3 years ago

1
Chapter 2 By: Nick Holliday Josh Vincz, James Collins, and Greg “Darth” Rader

2
Section 1 Vocab ● Conditional statement- statement with a hypothesis and a conclusion ● Hypothesis- “if ” part of a conditional statement. ● Conclusion- “then” part of the conditional statement ● If then form- if contains the hypothesis and then contains the conclusion ● Converse- The statement formed by switching the conclusion and the hypothesis ● Negation- The negative of a statement ● Inverse- The statement formed when you negate the hypothesis and conclusion of the converse.

3
Section 1 Vocab Continued ● Contrapositive- The statement formed when you negate the hypothesis and conclusion of a conditional statement. ● Equivalent statement- 2 statements that are both true or that are both false.

4
Example 1 ● Rewrite the conditional statement. ● An even number is divisible by 2 ● Conditional statement = If it is an even number Then it is divisible by 2

5
Example 2 ● Write the (a inverse, (b converse, (c contrapositive of the following statement. ● If it is Friday then there is no school tomorrow. ● (a Inverse: If it is not Friday, then there is school tomorrow. ● (b Converse: If there is no school tomorrow, then it is Friday. ● (c Contrapositive: If there is school tomorrow, then it is not Friday.

6
Checkpoint ● Write the inverse, converse, and contrapositive of the conditional statement. ● If Josh is complaining about a test score Then he was in Mrs. Wagner's class. ●

7
Point line and plane postulate` ● Post 5: Through any two points there exists exactly one line ● Post 6: A line contains at least two points ● Post 7: If two lines intersect then their intersection is one point ● Post 8: Through any three non colinear points there exists one plane ● Post 9: A plane contains at least three noncolinear points ● Post 10: If two points lie in a plane, then the line containing them lies in the plane ● Post 11: If two planes intersect, then their intersection is a line

8
Section 2 vocab ● Perpendicular lines – two lines that form a right angle. ● Line perpendicular to a plane- intersects plane at point that is perpendicular to every line. ● Bioconditional statement- a statement that contains if and only if and conditional and converse.

9
Example ● If it is an equailateral triangle then all angles on the triangle are congruent. ● If all the angleson the triangle are congruent then it is an equalaterial triangle ● Since both statements are true the biconditional statement is... ● It is an equalateral triangle if and only if all of the angles on the triangle are congruent.

10
Section 3 Vocab ● Logical argument- an argument based on deductive reasoning which uses facts, definintions, and accepted properties in a logical order ● Law of Detachment- If p q is a true conditional and p is true then q is true ● Law of Syllogism- If p and q r are true conditional statements, then p r is true

11
Other notes of section 3 ● P hypothesis ● Q conclusion ● Conditional statement = p q ● Converse = q p ● Biconditional statement = p< q or ● P if and only if Q ● ~ negate that portion of the statement

12
Example ● Let p be value of x is 7. Let q be x is <10. ● Write p—q in words then write q—p in words. ● Decide whether the Biconditional statement p<>q is true.

13
Algebraic properties of equality ● Let a b and c be real numbers. ● Addition property- if a= b then a+c=b+c ● Subtraction property- if a=b then a-c=a-b Multiplication property- if a=b then ac=bc ● Division property- if a=b and c does not = c then a/c=b/c ● Reflexive property- for any real number a, a=a ● Symmetric property- if a=b then b=a ● Transitive property- if a=b and b=c then a=c ● Substitution property- if a=b, then a can be substituted for b in any equation

14
Properties of Equality ● Segment Length ● Reflexive- For any segment AB AB=AB ● Symmetric- If AB=CD then CD=AB ● Transitive- If AB=CD and CD=EF then AB=EF ● Angle Measure ● Reflexive- For any angle A m
{
"@context": "http://schema.org",
"@type": "ImageObject",
"contentUrl": "http://images.slideplayer.com/8/2454949/slides/slide_14.jpg",
"name": "Properties of Equality ● Segment Length ● Reflexive- For any segment AB AB=AB ● Symmetric- If AB=CD then CD=AB ● Transitive- If AB=CD and CD=EF then AB=EF ● Angle Measure ● Reflexive- For any angle A m

15
Example ● Solve the following equations -2x +1 =56 -3x 5x + 12 = 2 + 10x

16
Section 5 vocab Theorem- A true statement that follows as a result of other true statements Two-column Proof- A type of proof written as numbered statement and reasons that show a logical argument Paragraph Proof- type of proof written as a paragraph.

17
Theorem 2.1 ● Reflexive- for any segment ab, ab is congruent to ab. ● Symmetric- if ab is congruent to cd then cd is congruent to ab. ● Transitive- if ab is congruent to cd and cd is congruent to ef then ab is congruent to ef.

18
Example ● Given JK is congruent to MN. MN is congruent to PQ. Prove JK is congruent to PQ

19
Section 2.6 ● Theorem 2.2 properties of angle congruences. ● Reflexive- for any angle a, a=a ● Symmetric- if angle a is congruent to angle b then angle b is congruent of angle a. ● Transitive- if angle a is congruent to angle b and angle b is congruent to angle c then angle a is congruent angle c.

20
Example ● Given that angle 4 is congruent to angle 6 and angle 6 is congruent to angle 8. The measure of angle 8 is 77. what is the measure of angle 4. explain your reasoning.

21
Theorem 2.3+ theorem 2.4 ● All right angles are congruent. ● If two angles are supplementary then they are congruent. ● If angle 1 + angle 2 = 180 and angle 2+ angle 3 = 180 then angle 1 and angle 3 are congruent.

22
Theorem 2.5 ● If two angles are complementary to the same angle then the two angles are congruent ● If angle 4 + angle 5=90 and angle 5+angle 6=90 then angle 4 = angle 6

23
Example ● Given angle 1 and angle 2 are complements, angle 3 and angle 4 are complements, angle 2 and angle 4 are congruent. Prove angle 1 and angle 3 are congruent,

Similar presentations

OK

Chapter 2, Section 1 Conditional Statements. Conditional Statement Also know as an “If-then” statement. If it’s Monday, then I will go to school. Hypothesis:

Chapter 2, Section 1 Conditional Statements. Conditional Statement Also know as an “If-then” statement. If it’s Monday, then I will go to school. Hypothesis:

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on surface water runoff Download ppt on community planning for disaster management Ppt on asymptotic notation of algorithms to solve Convert 2007 to 2003 ppt online Ppt on self help groups in india Authenticity of the bible ppt on how to treat Ppt on power line communication wiki Ppt on carburetor working Ppt on banking sector in pakistan Ppt on pricing policy for new products