Download presentation

Presentation is loading. Please wait.

Published byMauricio Flory Modified over 4 years ago

2
1 Topic 8: Optimisation of functions of several variables Unconstrained Optimisation (Maximisation and Minimisation) Jacques (4th Edition): 5.4

3
2 Recall…… Max Min X Y

4
3 Max Y = f (X) X*

5
4 Re-writing in terms of total differentials….

6
5

7
6 Max Y = f (X, Z) [X*, Z*] Necessary Condition: dY = f X.dX + f Z.dZ = 0 so it must be that f X = 0 AND f Z = 0 Sufficient Condition: d 2 Y= f XX.dX 2 +f ZX dZ.dX + f ZZ.dZ 2 + f XZ.dXdZ ….and since f ZX = f XZ d 2 Y= f XX.dX 2 + f ZZ.dZ 2 + 2f XZ dX.dZ ? >0 for Min <0 for Max Sign Positive Definite Min Sign Negative Definite Max

8
7

9
8 Optimisation - A summing Up …

10
9 Examples

11
10

12
11 Example 2

13
12

14
13 Example 3

15
14 Optimisation of functions of several variables Economic Applications Economic Applications

16
15 Example 1 A firm can sell its product in two countries, A and B, where demand in country A is given by P A = 100 – 2Q A and in country B is P B = 100 – Q B. It’s total output is Q A + Q B, which it can produce at a cost of TC = 50(Q A +Q B ) + ½ (Q A +Q B ) 2 How much will it sell in the two countries assuming it maximises profits?

17
16 Objective Function to Max is Profit…. = TR - TC = P A Q A + P B Q B – TC P A Q A = ( 100 – 2Q A )Q A P B Q B = ( 100 – Q B ) Q B = 100Q A – 2Q A 2 + 100Q B – Q B 2 – 50Q A – 50Q B – ½ (Q A +Q B ) 2 = 50Q A – 2Q A 2 + 50Q B – Q B 2 – ½ (Q A +Q B ) 2 Select Q A and Q B to max :

18
17 if = 50Q A – 2Q A 2 + 50Q B – Q B 2 – ½ (Q A +Q B ) 2 F.O.C. d =0 QA =50 - 4Q A – ½ *2 (Q A +Q B ) = 0 = 50 - 5Q A – Q B = 0(1) QB = 50 - 2Q B – ½ *2 (Q A +Q B ) = 0 = 50 - 3Q B – Q A = 0(2) 50 - 5Q A – Q B = 50 - 3Q B – Q A 2Q A = Q B Thus, output at stationary point is (Q A, Q B ) = (7 1 / 7, 14 2 / 7 )

19
18 Check Sufficient conditions for Max: d 2 <0 QA = 50 - 5Q A – Q B QB = 50 - 3Q B – Q A Then QAQA = – 5 < 0 QAQA. QBQB – ( QAQB ) 2 >0 (–5 * –3)) – (-1) 2 = 14 > 0 Max So firm max profits by selling 7 1 / 7 units to country A and 14 2 / 7 units to country B.

20
19 Example 2 Profits and production Max = PQ(L, K) – wL - rK {L *, K * } Total Revenue = PQ Expenditure on labour L = wL Expenditure on Capital K = rK Find the values of L & K that max

21
20 Necessary Condition: d = 0 L = PQ L – w = 0, MPL = Q L = w/P K = PQ K – r = 0, MPK = Q K = r/P Sufficient Condition for a max, d 2 <0 So LL 0

22
21 Max = 2 K 1/3 L 1/2 – L – 1/3 K {L *, K * } Necessary condition for Max: d =0 (1) L = K 1/3 L -1/2 – 1 = 0 (2) K = 2 / 3 K -2/3 L 1/2 – 1 / 3 = 0 Stationary point at [L *, K * ] = [4, 8] note: to solve, from eq1: L ½ = K 1/3. Substituting into eq2 then, 2 / 3 K – 2/3 K 1/3 = 1 / 3. Re-arranging K – 1/3 = ½ and so K 1/3 = 2 = L ½. Thus, K* =2 3 = 8. And so L* = 2 2 = 4. NOW, let Q = K 1/3 L 1/2, P = 2, w = 1, r =1/3 Find the values of L & K that max ?

23
22 L = K 1/3 L -1/2 – 1 K = 2 / 3 K -2/3 L 1/2 – 1 / 3 LL = - 1 / 2 K 1/3 L -3/2 < 0 for all K and L KK = – 4 / 9 K –5/3 L ½ KL = LK = 1 / 3 K –2/3 L -½ For sufficient condition for a max, Check d 2 0

24
23 LL. KK =(- 1 / 2 K 1/3 L -3/2 ).( – 4 / 9 K –5/3 L ½ ) = 4 / 18. K –4/3 L -1 KL 2 = ( 1 / 3 K –2/3 L -½ ). ( 1 / 3 K –2/3 L -½ ) = 1 / 9 K –4/3 L -1 Thus, LL. KK > KL. LK since 4 / 18 > 1 / 9 So, ( LL. KK - KL. LK ) >0 for all values of K & L Profit max at stationary point [L *, K * ] = [4, 8]

25
24 Unconstrained Optimisation – Functions of Several Variables Self-Assessment Questions on Website Tutorial problem sheets Pass Exam Papers Examples in the Textbook

Similar presentations

OK

Costs--Where S(P) comes from © 1998,2007, 2010 by Peter Berck.

Costs--Where S(P) comes from © 1998,2007, 2010 by Peter Berck.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google