# Chapter 12 Sorting and searching. This chapter discusses n Two fundamental list operations. u Sorting u Searching n Sorted lists. n Selection/bubble sort.

## Presentation on theme: "Chapter 12 Sorting and searching. This chapter discusses n Two fundamental list operations. u Sorting u Searching n Sorted lists. n Selection/bubble sort."— Presentation transcript:

Chapter 12 Sorting and searching

This chapter discusses n Two fundamental list operations. u Sorting u Searching n Sorted lists. n Selection/bubble sort. n Binary search. n Loop invariant.

Ordering lists n There must be a way of comparing objects to determine which should come first. There must be an ordering relation. n There must be an operator to compare the objects to put them in order. n The ordering is antisymmetric. (a b !<a) n The ordering is transitive. (a a<c) n The ordering is total with respect to some equivalence on the class. (a b or a==b, but only one; here == means equivalent with respect to the ordering)

Implementing comparison public boolean lessThan (Student s) s1.lessThan(s2) Returns true if s1 =s2. for i > 0, j < size(), get(i).lessThan(get(j)) implies i < j.

Selection Sort n Find the smallest element in the list, and put it in first. n Find the second smallest and put it second, etc.

Selection Sort (cont.) n Find the smallest. n Interchange it with the first. n Find the next smallest. n Interchange it with the second.

Selection Sort (cont.) n Find the next smallest. n Interchange it with the third. n Find the next smallest. n Interchange it with the fourth.

Selection Sort (cont.) n To interchange items, we must store one of the variables temporarily.

Analysis of selection sort n If there are n elements in the list, the outer loop is performed n-1 times. The inner loop is performed n-first times. i.e. time= 1, n-1 times; time=2, n-2 times; … time=n-2, 1 times. n (n-1)x(n-first) = (n-1)+(n-2)+…+2+1 = (n 2 -n)/2 n As n increases, the time to sort the list goes up by this factor (order n 2 ).

Bubble sort n Make a pass through the list comparing pairs of adjacent elements. n If the pair is not properly ordered, interchange them. n At the end of the first pass, the last element will be in its proper place. n Continue making passes through the list until all the elements are in place.

Pass 1

Pass 1 (cont.)

Pass 2

Pass 3 &4

Analysis of bubble sort n This algorithm represents essentially the same number of steps as the selection sort. n If make a pass through the list without interchanging, then the list is ordered. This makes the algorithm fast if it is mostly ordered.

Binary search n Assumes an ordered list. n Look for an item in a list by first looking at the middle element of the list. n Eliminate half the list. n Repeat the process.

Binary search

private int itemIndex (Student item, StudentList list) The proper place for the specified item on the specified list, found using binary search. require: list is sorted in increasing order ensure: 0 <= result <= list.size() for 0 <= i < result list.get(i) < item for result <= i < list.size() list.get(i) >= item

Binary search (cont.) private int itemIndex (Student item, StudentList list) { int low; //lowest index considered int high; //highest index considered int mid; //middle between high and low low =0 high = list.size() -1; while (low <= high) { mid = (low+high)/2; if (list.get(mid).lessThan(item)) low = mid+1; else high = mid-1; } return low; }

Binary search (cont.)

Completing the search /** * Uses binary search to find where and if an element * is in a list. * require: * item != null * ensure: *if item == no element of list * indexOf(item, list) == -1 *else * item == list.get(indexOf(item, list)), * and indexOf(item, list) is the smallest * value for which this is true */ public int indexOf(Student item, StudentList list){ int i = itemIndex(item, list); if (i<list.size() && list.get(i).equals(item)) return i; else return -1; }

Sequential/linear search public int indexOf (Student obj) { int i; int length; length = this.size(); i = 0; while (i < length && !obj.equals(get(i))) i = i+1; if ( i < length) return i; else return -1;// item not found }

Relative efficiency

Loop invariant n A loop invariant is a condition that remains true as we repeatedly execute the loop body, and captures the fundamental intent in iteration. n partial correctness: the assertion that a loop is correct if it terminates. n total correctness: the assertion that a loop is both partially correct, and terminates. n loop invariant: a condition that is true at the start of execution of a loop and remains true no matter how many times the body of the loop is performed.

Back to binary search 1.private int itemIndex (Student item, StudentList list) { 2.low =0 3.high = list.size() -1; 4.while (low <= high) { 5.mid = (low+high)/2; 6. if (list.get(mid).lessThan(item)) 7. low = mid+1; 8. else 9. high = mid-1; 10.} 11.return low; 12.} n At line 6, we can conclude 0 <= low <= mid <= high < list.size()

The key invariant for 0 <= i < low list.get(i) < item for high < i < list.size() list.get(i) >= item n This holds true at all four key places (a, b, c, d). u It is vacuously true for indexes less than low or greater than high (a) u We assume it holds after merely testing the condition (b) and (d) u If the condition holds before executing the if statement and the list is sorted in ascending order, it will remain true after executing the if statement (condition c).

The key invariant n We are guaranteed that for 0 <= i < mid list.get(i) < item After the assignment, low equals mid+1 and so for 0 <= i < low list.get(i) < item n This is true before the loop body is done: for high < i < list.size( list.get(i) >= item

Partial correctness: If the loop body is not executed at all, and point (d) is reached with low == 0 and high == -1. If the loop body is performed, at line 6, low <= mid <= high. low <= high becomes false only if mid == high and low is set to mid + 1 or low == mid and high is set to mid - 1 In each case, low == high + 1 when the loop is exited.

Partial correctness: n The following conditions are satisfied on loop exit low == high + 1 for 0 <= i <= low list.get(i) < item for high < i < list.size() list.get(i) >= item n which implies for 0 <= i < low list.get(i) < item for low <= i < list.size() list.get(i) >= item

Loop termination When the loop is executed, mid will be set to a value between high and low. The if statement will either cause low to increase or high to decrease. This can happen only a finite number of times before low becomes larger than high.

Weve covered n Sorting u selection sort u bubble sort n Searching u Sequential/linear search u binary search n Verifying correctness of iterations u partial correctness u loop invariant u key invariant u termination

Glossary

Glossary (cont.)

Similar presentations