Download presentation

Presentation is loading. Please wait.

Published byParker Levell Modified over 2 years ago

1
7.4 Remainder and Factor Theorems 7.5 Roots and Zeros Algebra II w/ trig

2
2 Methods for Polynomial Division can be used to find a quotient and remainder: Long division: will work for divisors of any degree Synthetic Division: is quicker, but only will work for divisors of the form x+k Long Division:synthetic division:

3
Or you can use Synthetic Substitution: If f(x) = -16t t + 5 Find f(3):

4
I. REMAINDER THEOREM: If a polynomial f(x) is divided by (x-c), the remainder is f(c). A. Using synthetic substitution(use when degree is greater than 2) to find f(-3) : 1.if 2.if 3.if

5
II. FACTOR THEOREM: A polynomial f(x) has a factor (x-k) if and only if f(k)=0, so if the remainder is zero. A. Show that (x+5) is a factor of. Then find the remaining factor(s) of the polynomial.

6
B. Given a polynomial and one of its factors, find the remaining factors of the polynomials. 1.

7
2.

8
3.

9
4.

10
7.5 Roots and Zeros FUNDAMENTAL THEOREM OF ALGEBRA: If f(x) is a polynomial with positive degree, then f(x) has at least one root. In general: Degree = # of solutions, roots, zeros (but sometimes the same solution can happen more than one (double root - (x+2) 2 ; x = -2) Imaginary solutions always occur in pairs: If (a+bi) is a solution, then automatically we have (a – bi) is a solution as well.

11
I. Given a function and one of its zeros, find the remaining zeros of the functions. A.

12
B.

13
C.

14
D.

15
E.

16
II. Write a polynomial equation with the given roots. A. 6, 2iB. 1, 1+i

17
C. -2, 2+3iD.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google