Download presentation

1
**Co-ordinate Geometry III**

2 4 6 -2 X-axis Y-axis Parallel and Perpendicular Lines. m1x m2 = -1 m1 = m2 Equations of Lines II By Mr Porter

2
**Assumed Knowledge: Gradient, m, using 2 points.**

Standard form of a line: y = mx + b General form of a line: Ax + By + C = 0 Ability to rearrange algebraic expression / equation: Change of Subject Examples Rearrange the general line Ax + By + C = 0, to standard form, y = mx + b. Where m is the gradient and b is the y-intercept, for each of the following. a) 3x + 2y – 6 = 0 b) 4x – 2y + 7 = 0 2y =-3x + 6 4x + 7 = 2y y = mx + b y = mx + b

3
Parallel Lines Definition: Two lines y = m1x + b1 and y = m2 x + b2 are parallel, if their gradients are equal: m1 = m2. Example 2 Find the equation of the line parallel to , passing through the point (-1,3). Example 1 Find the equation of the line parallel to y = 3x – 2, passing through the point (2,-5). From, , in standard form, y = mx + b. To find the equation of a line, you need to have a gradient, m, and a point on the line. In this case, we have the point, need to find the gradient. From, y =3x – 2, in standard form, y = mx + b. The gradient of the given line is The gradient of the given line is m = 3. Gradient, mi, of ALL lines parallel to the given line are equal. m1 = m2 Gradient, mi, of ALL lines parallel to the given line are equal. m1 = m2 Therefore, m = 3. Therefore, The point-gradient form of a lines is: y - y1 = m(x - x1) The point-gradient form of a lines is: y - y1 = m(x - x1) y – 3 = (x – -1) y – -5 = 3(x – 2) 3y – 9 = -2x – 2 y + 5 = 3x – 6 y = 3x – 1, is the required line. 2x +3y – 7 = 0, is the required line.

4
**Parallel lines to a given general line: Ax + By + C = 0.**

If the given line is in general form, it has to be rearrange to standard form to obtain the gradient, m. Example 1 Find the equation of the line parallel to 3x + 2y – 6 = 0, through the point (3,-5). Example 2 Find the equation of the line parallel to 5x – 2y + 4 = 0, through the point (-2,8). Step 1: Rearrange the given equation to standard form: y = mx + b. Step 1: Rearrange the given equation to standard form: y = mx + b. 5x – 2y + 4 = 0 3x + 2y – 6 = 0 5x + 4 = 2y 2y = -3x + 6 i.e y = mx + b i.e y = mx + b The point-gradient form of a lines is: y - y1 = m(x - x1) The point-gradient form of a lines is: y - y1 = m(x - x1) 3x + 2y + 1 = 0, is the required line. 5x – 2y + 26 = 0, is the required line.

5
Exercise 1: Find the equation of the line parallel to the given line passing through the given point.

6
Perpendicular Lines. Definition: Two lines y = m1x + b1 and y = m2 x + b2 are perpendicular, if the product of the gradients is equal to -1: m1 x m2 = -1. Alternative: The gradients are negative reciprocals. Example 1 Find the equation of the line perpendicular to y = 3x – 2, passing through the point (2,-5). Example 2 Find the equation of the line perpendicular to , passing through the point (-1,3). From, y =3x – 2, in standard form, y = mx + b. From, , in standard form, y = mx + b. The gradient of the given line is m1 = 3. The gradient of the given line is Perpendicular gradient, m2, are such that 3 x m2 = -1. Therefore, Perpendicular gradient, m2, are such that x m2 = -1. Therefore, Negative reciprocal! Negative reciprocal! The point-gradient form of a lines is: y - y1 = m2(x - x1) The point-gradient form of a lines is: y - y1 = m2(x - x1) x + 3y + 13 = 0, is the required line. 3x – 2y + 9 = 0, is the required line.

7
**Perpendicular gradient, m2, are such that x m2 = -1. Therefore, **

Example 3 Find the equation of the line perpendicular to 3x + 2y – 6 = 0, through the point (3,-5). Example 4 Find the equation of the line perpendicular to 5x – 2y + 4 = 0, through the point (-2,8). Step 1: Rearrange the given equation to standard form: y = mx + b. Step 1: Rearrange the given equation to standard form: y = mx + b. 3x + 2y – 6 = 0 5x – 2y + 4 = 0 2y = -3x + 6 5x + 4 = 2y i.e y = mx + b i.e y = mx + b Perpendicular gradient, m2, are such that x m2 = -1. Therefore, Perpendicular gradient, m2, are such that x m2 = -1. Therefore, The point-gradient form of a lines is: y - y1 = m(x - x1) The point-gradient form of a lines is: y - y1 = m(x - x1) 2x – 3y – 21 = 0, is the required line. 2x + 5y – 36 = 0, is the required line.

8
Exercise 2: Find the equation of the line perpendicular to the given line passing through the given point.

Similar presentations

OK

PARALLEL AND PERPENDICULAR LINES ALGEBRA 2/GEOMETRY HIGH SCHOOL.

PARALLEL AND PERPENDICULAR LINES ALGEBRA 2/GEOMETRY HIGH SCHOOL.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google