Download presentation

Presentation is loading. Please wait.

Published byJaidyn Merriam Modified over 3 years ago

1
Structure of Neutron-rich Isotopes and Roles of Three-body Forces Toshio Suzuki Nihon University Trento, July 13, 2011

2
○ Shell-model interactions important roles of tensor force need more repulsion in T=1 monopoles need more attraction in T=0 monopoles 1. Repusive Corrections in T=1 Monopoles and Structure of C isotopes with the use of a ‘ phenomenological ’ interaction Three-body forces → repulsion 2. ・ Structure of O and Ca isotopes and three-body forces ‘ G + FM-3N (Δ excitaions by 2π exchanges) ’ ・ He, Sn isotopes and remaining problems

3
1.Repusive Corrections in T=1 Monopoles and Structure of C isotopes ・ Important roles of tensor forces e.g. a new p-shell Hamiltonian: SFO ・ Need for repulsion in T=1 monopoles G-matrix vs. phenomenological interactions ・ Monopole-based-universal interaction (VMU) ・ Phenomenological shell model interaction for neutron-rich carbon isotopes: SFO-tls ・ Structure of C isotopes

4
New shell model Hamiltonians → success in better description of spin modes in nuclei ● Important roles of tensor force → SFO (p, p-sd) (Suzuki-Fujimoto-Otsuka) ・ Shell evolutions ・ GT transitions and magnetic moments ● Monopole-based universal interaction (VMU) Monopole terms in V nn tensor force

5
SFO p-sd shell Tensor components Suzuki, Fujimoto, Otsuka, PR C67 (2003) Shell evolution in N=8 isotone πp3/2 N=6 N=8

6
B(GT) for 12 C → 12 N present = SFO Suzuki, Fujimoto, Otsuka, PR C67 (2003) Magnetic moments of p-shell nuclei SFO*: g A eff /g A =0.95 B(GT: 12 C)_cal = experiment SFO Space: up to 2-3 hw PR C55, 2078 (1997) Suzuki, Chiba, Yoshida,Kajino, Otsuka, PR C74, 034307, (2006).

7
more repulsion than G in T=1 more attraction than G in T=0 ● Tensor force + repulsive corrections in T=1 monopoles → SFO-tls ・ Structure of neutron- rich C isotopes ・ Exotic M1 transitions in 17 C ● 3 body forces induced by Δ excitations → repulsion in T=1 monopoles

8
VMU= Monopole based Universal Interaction Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen PRL 104 (2010) 012501 Tensor: bare≈renormalized 16 20

9
Modification of SFO Full inclusion of tensor force ・ p-sd: tensor-> LS -> ・ sd: Kuo G-matrix T=1 monopole terms more repulsive → SFO-tls 3=0d3/2 5=0d5/2 1=1s1/2

10
neutron N dependent e n 0.33 0.27 0.22 ESP

11
M1 transitions in 17 C Anomalous suppression of B(M1) strength D. Suzuki et al., PL B666 (2008) Suzuki, Otsuka, PR C78 (2008) 061301(R)

12
2. Structure of O and Ca isotopes and three-body forces Shell model G-matrix vs. G-matrix + three-body force G = BonnC, CD-Bonn for Ca; 3 rd -order Q-box G = Kuo, BonnC, CD-Bonn for O Hjorth-Jensen, Kuo, Osnes Phys. Rep. 261 (1995) 125. FM (Fujita-Miyazawa) three-body force Δ-excitation by two-pion exchange ・ Effective neutron single-particle energies ・ Ground state energies ・ E x (2 + ) ・ M1 transition in 48 Ca

13
core-polarization effects +3 rd -order etc. Hjorth-Jensen et al., Phys. Rep. 261, 125 (1995) T. T. S. Kuo, Nucl. Phys. A103, 71 (1967) Kuo (HJ): 2 nd -order, up to 2hw BonnC: 3 rd -order, up to 2-4 hw CD-BonnC: 3 rd -order, up to 18hw

14
Monopole terms from 3-body force induced by Δ excitations and short-range terms j j ’ j ’ j j ’ j j j ’ j j ’ j j ’ repulsive

15
Monopole terms from 3-body force induced by Δ excitations （ A ） j j ’ j ’ j j j ’ j j ’ j ’ j j ’ j j ’ j j ’ j （ B ） j j ’ （ C ） j ’ j j j ’ j j ’ j j ’

16
Monopoles for sd-shell: T=1 ● Oxygen isotopes

17
ESPE of Oxygen Isotopes 3N →repulsion

18
E(2 + )

19
Multipoles vs. monopoles

20
Energies of O isotopes 3-body force → drip line at 24 O Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

21
Effects of breaking of 16 O core 0hw 2hw 16 O 83% 17% 20 O 91% 24 O 97% 28 O 99% p-sd p, p-sd: SFO sd: G How double magic is 24O? Cal: closed (p-d5/2-s1/2 ） core 87%

22
Monopoles 3-body force →repulsion ● Ca isotopes

23
Energies of Ca isotopes

24
E(2 + ) 48 3N → Shell closure at 48 Ca

25
Multipoles vs. monopoles

26
EXP. ： Steffen et al. NP A404, 413 (1983) B(M1) +3N (multipole) → concentration of M1 strength

27
(A/42 )-0.35

28
Energy levels of odd Ca isotopes Important roles of multipole components

29
SPE=PKUO p1/2: 3.8282 MeV p3/2: 1.744 MeV (spe) : p3/2: +0.6MeV ● He isotopes

30
Erosion of N=64 magic New magic at N=76?

31
Remaining Problems T=0 monopoles Need attractive correction Microscopic derivation of single-particle energies (J. D. Holt) Extension of the configuration space sd -> sd+f7/2,p3/2 (J. D. Holt) fp -> fp+g9/2 (J. D. Holt) G-matrix for non-degenerate orbits (Tsunoda) p-sd, sd-pf, pf-g9/2

32
－－ Higher order terms Monopoles for π(AV8 ’ ) Core= 4 He T=1 T=0 1 : 3x(-3)=-9 Monopoles in T=0

33
Summary Three-body force can describe well the g.s. energies of O and Ca (and He) isotopes, drip-line at 24 O, shell closure at 48 Ca, as well as M1 transition strength in 48 Ca. Structure of C isotopes can be well described by an improved Hamiltonian with proper tensor forces and repulsive corrections in T=1 monopoles.

34
Collaborators T. Otsuka Univ. of Tokyo J. D. Holt ORNL A. Schwenk Darmstadt

36
殻模型 H = T + U(r) + Σ i>j V ij = H 0 + V 一体場 + 残留相互作用 U(r) = U c (r) +U LS (r)L ・ S 殻模型相互作用 ・ Microscopic interaction derived from NN interaction 1. Renormalization of repulsive core part of NN interaction G-matrix: V_{low-k} integrating out high momentum components of two-nucleon interaction sum of ladders

37
Good energy levels except for a few cases: e.g. closed-shell struture of 48Ca can not be obtained Problems in saturation (binding energies) ・ Phenomenological interaction single particle energies + fitted two-body matrix elements e.g. p-shell: Cohen-Kurath p-sd: Millener-Kurath sd: USD core-polarization effects +3 rd -order etc. Hjorth-Jensen et al., Phys. Rep. 261, 125 (1995)

38
Monopoles for sd-shell: T=1 ● Oxygen isotopes

40
Monopoles for sd-shell: T=1 ● Oxygen isotopes

41
ESPE of Oxygen Isotopes 3N →repulsion

42
ESPE of Oxygen Isotopes 3N →repulsion

43
E(2 + )

47
Energies of O isotopes 3-body force → drip line at 24 O Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

48
Effects of breaking of 16 O core 0hw 2hw 16 O 83% 17% 18 O 87% 20 O 91% 22 O 95% 24 O 97% 26 O 98% 28 O 99% p-sd p, p-sd: SFO sd: G

50
Energies of Ca isotopes

51
E(2 + ) 48 3N → Shell closure at 48 Ca

52
B(GT) for 14 N -> 14 C SFO Negret et al., PRL 97 (2006) KVI RCNP 14 C → 14 N SFO

53
14 C -> 14 N g.s. Bonn-B 0hw

54
SFO- ｔ ｌｓ

55
－－ Higher order terms Monopoles for π(AV8 ’ ) Core= 4 He T=1 T=0 1 : 3x(-3)=-9 Monopoles in T=0

56
Erosion of N=64 magicNew magic at N=76

Similar presentations

OK

2009.9.4 fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.

2009.9.4 fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on event handling in javascript alert Ppt on biodiversity in india Ppt on do's and don'ts of group discussion tips Ppt on data handling for class 3 Ppt on road accidents essay Ppt on elections in india downloads Topics for ppt on electrical engineering Ppt on point contact diode construction Skill based pay ppt online Ppt on breadth first search and depth first search