Download presentation

Presentation is loading. Please wait.

Published byMaryam Platten Modified over 4 years ago

1
Transformation of Graphs Andrew Robertson

2
Transformation of f(x)+a f(x) = x 2

3
Transformation of f(x)+a y = x 2 + 3

4
Transformation of f(x)+s y = x 2 - 2

5
Transformation of sf(x) f(x) = (x-2)(x-3)(x+1) 2f(x)

6
Transformation of sf(x) y=2f(x) = 2(x-2)(x-3)(x+1) 0.5f(x)

7
Transformation of sf(x) y=0.5f(x) = 0.5(x-2)(x-3)(x+1)

8
Transformation of f(x+s) f(x) = x 2 f(x-2)

9
Transformation of f(x+s) y=f(x-2) = (x-2) 2 f(x+2)

10
Transformation of f(x+s) y=f(x+2) = (x+2) 2

11
Transformation of f(sx) f(x) = (x-2)(x-3)(x+1) f(2x)

12
Transformation of f(sx) y=f(2x) = (2x-2)(2x-3)(2x+1) f(0.5x)

13
Transformation of f(sx) y=f(0.5x) = (0.5x-2)(0.5x-3)(0.5x+1) -f(x)

14
Transformation of -f(x) f(x) = (x-2)(x-3)(x+1) -f(x)

15
Transformation of -f(x) y=-f(x) = -[(x-2)(x-3)(x+1)] f(-x)

16
Transformation of f(-x) f(x)=(x-2)(x-3)(x+1) y=f(-x)=(-x-2)(-x-3)(-x+1)

17
Combinations of transformations f(x)= x 2 then y=f(x+2)-3 = (x+2) 2 -3

18
Combinations of transformations y = x 2 then y=-2f(x-3) = -2(x-3) 2

19
F(αx±β) - Inside brackets always effects the horizontal αF(x) ±β - Outside brackets always effects the vertical

20
f(x) ± a Vertical shift (x,y) -> (x, y ± a) f(x ± a) Horizontal shift (x,y) -> (x a, y) Note that when + shift to Left and – shift to Right αf(x) Vertical Stretch/compression by factor α (x,y) -> (x, αy) f(αx) Horizontal Stretch/compression by factor 1/α (x,y) -> (x/α, y) f(-x) Refection though y axes (x,y) (-x, y) - f( x) Reflection through x axes (x,y) ( x, -y)

Similar presentations

Presentation is loading. Please wait....

OK

Section 1.6 Transformation of Functions

Section 1.6 Transformation of Functions

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google