Download presentation

Presentation is loading. Please wait.

Published byYasmin Gambel Modified over 2 years ago

1
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010

2
Gravitational Waves From our matrix all 3 terms are zero => A particle initially at rest will remain at rest. In the TT gauge we have a coordinate system which remains attached to individual particles Now consider two particles, one at (0,0,0) and the other at ( ,0,0) Proper distance between them is and this DOES change with time

3
Geodesic Deviation The geodesic deviation between two freely falling objects separated by a vector a is given by (not proved here) A fundamental result which states that curvature can be measured locally by watching the proper distance between particles If particles are at rest and separated by along the x-axis then

4
Geodesic Deviation The components of the Riemann tensor can be calculated as So two particles separated by along the x-axis will have a separation vector defined by

5
Example of R x oxo Term

6
Geodesic Deviation The components of the Riemann tensor can be calculated as If the particles are separated by along the y-axis it can be shown in a similar way that Previous result for x-axis

7
Geodesic Deviation For the h xx component The metric has sinusoidal solutions And this gives sinusoidal solutions for the particle separation from earlier slide

8
Geodesic Deviation Extending to a ring of test particles gives where there are 2 polarisations:

9
Leading Order Radiation Consider analogy with Electromagnetic radiation Waves are formed by the time-change in the position and distribution of the “charges” in the system (q or m) Monopole Radiation =>Time variation of total charge (zeroth moment) in the system Charge/Energy conservation rules this out for EW’s and GW’s

10
Leading Order Radiation Dipole Radiation => Time variation of the charge distribution (1 st moment) Efficient production mechanism for EW’s Momentum conservation rules this out for GW’s (both linear + angular)

11
Leading Order Radiation Quadrupole Radiation => Time variation of the charge distribution (2 nd moment) No conservation rules left => leading order radiation term for GW’s 2 nd moment depends on the moment of inertia tensor (L ij )

12
Estimate of Strain Amplitude Consider two stars, mass M, radial separation r The quadrupole moment is R R

13
Estimate of Strain Amplitude The magnitude of the metric stretch in the xx direction is or, using Kepler’s 3 rd law, which gives modulated at 2

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google