Presentation is loading. Please wait.

Presentation is loading. Please wait.

Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique.

Similar presentations


Presentation on theme: "Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique."— Presentation transcript:

1 Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique de la Matière Condensée et Nanostructure, Lyon, France Laboratoire de Photonique et Nanostructures, Marcoussis, France Groupement d’Etude des Semiconducteurs, Montpellier, France

2 Properties of surface plasmons Description of surface plasmons Plasmons in strong coupling Hybridisation localised plasmon/exciton Localised plasmon in nanodisks Nanodisks with organic semiconductor Particularities of the hybrid states Inhomogeneous broadenings Geometrical effects Conclusion Outline

3 Surface plasmon Interface metal / dielectric material Damping in the metal Dielectric Metal 100nm 20nm 2D 0D nanoparticules1D plasmon guide W. L. Barnes et al., Nature, 418, 306 (2002) Properties of surface plasmons

4 Delocalised plasmon in strong coupling D.E. Gomez et al. Nano Lett (2010) Strong interaction between plasmons and : Aggregated dyes Laser dyes such as Rhodamine 6G Semiconductor nanocrystals arrays : CdSe dots under a thin silver film Rabi splitting of 112 meV T.K. Hakala et al. PRL (2009) J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier., PRL 93, (2004) Weak coupling :Luminescence enhancement with nanoantennas

5 Plasmon in strong coupling J. Dintinger et al. Phys. Rev. B 71, (2005) Plasmons in nanoshells N. T. Fofang et al. Nanoletters (2008) GOLD Y. Sugawara et al. PRL 97, (2006) Metallic nanostructures Holes and voids in metallic structures Properties of surface plasmons

6 Localised plasmons Discrete Plasmon resonance Distance between the disks 200nm Low inhomogeneous broadening 300nm Hybridisation localised plasmon/exciton Ag Nanodisks control of the environment and size

7 Bare plasmon resonances Transmission of nanodisks Plasmon resonances energy : size dependant linewidth 150meV No plasmon overlapping Hybridisation localised plasmon/exciton

8 Nanodisks with TDBC Three transmission dips TDBC absorption two size dependant dips Uncoupled regionsBare TDBC Absorption (a. u.) Transmission Energy (eV) 121 nm 143 nm 111 nm (b) (a) Hybridisation localised plasmon/exciton Nanodisks covered with a TDBC layer

9 Two levels model Formation of localised plasmon/ exciton mixed states E plasmon E exciton ħħ Hybridisation localised plasmon/exciton

10 Formation of polaritons Rabi splitting depends on TDBC thickness FDTD simulations Rabi energy 450meV 20% of the transition energy Energy (eV) Nanodisk diameter (nm) (b) Nanodisk diameter (nm) 450meV 1 TDBC layer 2 TDBC layers Energy (eV) Hybridisation localised plasmon/exciton J. Bellesa et al. Phys. Rev. B 80, (2009)

11 Homogeneous and inhomogeneous broadenings In microcavities In nanoparticles Particularities of the hybrid states N N photon Excitons ? N. F. Fofang et al. Nanolett. 2008, 8 (10), 3481 Strong coupling E Rabi <  inhomogène plasmons exciton

12 Distance between disks Large modification of the bare plasmons Diffractive effects Rabi energy roughly unchanged Particularities of the hybrid states

13 Conclusion Localized plasmon/exciton hybridization Rabi splitting of 450 meV (20% transition energy) Model system for cylindrical nanoparticles with controlled size and environment


Download ppt "Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique."

Similar presentations


Ads by Google