Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.

Similar presentations


Presentation on theme: "Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν."— Presentation transcript:

1 Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν

2 Neutrino Physics and Cosmology 3rd lecture Bounds on m ν from CMB, LSS and other data Bounds on the radiation content (N eff ) Future sensitivities on m ν from cosmology

3 Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark

4 Neutrinos as Hot Dark Matter Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation (combined with other cosmological data)

5 How to get a bound (measurement) of neutrino masses from Cosmology DATA Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) PARAMETER ESTIMATES

6 Cosmological Data CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA…) CMB Polarization: WMAP,… Large Scale Structure: * Galaxy Clustering (2dF,SDSS) * Bias (Galaxy, …): Amplitude of the Matter P(k) (SDSS,σ 8 ) * Lyman-α forest: independent measurement of power on small scales * Baryon acoustic oscillations (SDSS) Bounds on parameters from other data: SNIa (Ω m ), HST (h), …

7 Cosmological Parameters: example SDSS Coll, PRD 69 (2004)

8 Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! ν

9 Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! Different analyses have found upper bounds on neutrino masses, since they depend on The combination of cosmological data used The assumed cosmological model: number of parameters (problem of parameter degeneracies) The properties of relic neutrinos

10 Cosmological bounds on neutrino masses using WMAP1 Bound on Σm ν (eV) [95% CL] Data used Ichikawa et al, PRD 71 (2005) Sánchez et al, MNRAS 366 (2006) 189 MacTavish et al, astro-ph/ CMB only Hannestad, JCAP 0305 (2003) 004 SDSS Coll., PRD 69 (2004) Barger et al, PLB 595 (2004) 55 Crotty et al, PRD 69 (2004) Rebolo et al, MNRAS 353 (2004) 747 Fogli et al. PRD 70 (2004) Seljak et al, PRD 71 (2005) Sánchez et al, MNRAS 366 (2006) 189 MacTavish et al, astro-ph/ [ ] WMAP1, other CMB, 2dF/SDSS-gal [HST,SNIa] WMAP Coll., ApJ Suppl 148 (2003) 175 Fogli et al. PRD 70 (2004) Seljak et al, PRD 71 (2005) MacTavish et al, astro-ph/ Hannestad, hep-ph/ WMAP1, other CMB, 2dF/SDSS-gal, 2dF/SDSS-bias and/or Ly-α

11 Cosmological bounds on neutrino masses using WMAP3 Bound on Σm ν (eV) [95% CL] Data used WMAP Coll., astro-ph/ Fukugita et al, astro-ph/ Kristiansen et al, astro-ph/ – 2.3 CMB only WMAP Coll., astro-ph/ Goobar et al, astro-ph/ – 0.91 WMAP3, other CMB, 2dF/SDSS- gal, SNIa Goobar et al, astro-ph/ Seljak et al, astro-ph/ Kristiansen et al, astro-ph/ WMAP3, other CMB, 2dF/SDSS- gal, SDSS-BAO and/or Ly-α Fogli et al., hep-ph/

12 Neutrino masses in 3-neutrino schemes Fig from Strumia & Vissani, NPB726(2005)294 CMB + galaxy clustering + HST, SNI-a…+ BAO and/or bias + including Ly- α

13 Tritium  decay, 0 2  and Cosmology Fogli et al., hep-ph/

14 0 2  and Cosmology Fogli et al., hep-ph/

15 Parameter degeneracy: Neutrino mass and w In cosmological models with more parameters the neutrino mass bounds can be relaxed. Ex: quintessence-like dark energy with ρ DE =w p DE WMAP Coll, astro-ph/ Λ

16 At T

17 Extra radiation can be: scalars, pseudoscalars, sterile neutrinos (totally or partially thermalized, bulk), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles… Particular case: relic neutrino asymmetries Constraints on N eff from BBN and from CMB+LSS Extra relativistic particles

18 Effect of N eff at later epochs N eff modifies the radiation content: Changes the epoch of matter-radiation equivalence

19 CMB+LSS: allowed ranges for N eff Set of parameters: ( Ω b h 2, Ω cdm h 2, h, n s, A, b, N eff ) DATA: WMAP + other CMB + LSS + HST (+ SN-Ia) Flat Models Non-flat Models Recent result Pierpaoli, MNRAS 342 (2003) 95% CL Crotty, Lesgourgues & SP, PRD 67 (2003) 95% CL Hannestad, JCAP 0305 (2003) Hannestad & Raffelt, astro-ph/ % CL

20 Future bounds on N eff Next CMB data from WMAP and PLANCK (other CMB experiments on large l’s) temperature and polarization spectra Forecast analysis in Ω Λ =0 models Lopez et al, PRL 82 (1999) 3952 WMAP PLANCK

21 Future bounds on N eff Updated analysis: Larger errors Bowen et al 2002 ΔN eff ~ 3 (WMAP) ΔN eff ~ 0.2 (Planck) Bashinsky & Seljak 2003

22 The bound on Σm ν depends on the number of neutrinos Example: in the 3+1 scenario, there are 4 neutrinos (including thermalized sterile) Calculate the bounds with N ν > 3 Abazajian 2002, di Bari 2002 Hannestad JCAP 0305 (2003) 004 (also Elgarøy & Lahav, JCAP 0304 (2003) 004) 3 ν 4 ν 5 ν Hannestad 95% CL WMAP + Other CMB + 2dF + HST + SN-Ia

23 Σm ν and N eff degeneracy (0 eV,3) (0 eV,7) (2.25 eV,7) (0 eV,3) (0 eV,7) (2.25 eV,7)

24 Analysis with Σm ν and N eff free Hannestad & Raffelt, JCAP 0404 (2004) 008 Crotty, Lesgourgues & SP, PRD 69 (2004) σ upper bound on Σm ν ( eV) WMAP + ACBAR + SDSS + 2dF Previous + priors (HST + SN-Ia)

25 Analysis with Σm ν and N eff free Crotty, Lesgourgues & SP, PRD 69 (2004) WMAP + ACBAR + SDSS + 2dF Hannestad & Raffelt, astro-ph/

26 Non-standard relic neutrinos The cosmological bounds on neutrino masses are modified if relic neutrinos have non-standard properties (or for non-standard models) Two examples where the cosmological bounds do not apply Massive neutrinos strongly coupled to a light scalar field: they could annihilate when becoming NR Neutrinos coupled to the dark energy: the DE density is a function of the neutrino mass (mass-varying neutrinos)

27 Non-thermal relic neutrinos The spectrum could be distorted after neutrino decoupling Example: decay of a light scalar after BBN Cuoco, Lesgourgues, Mangano & SP, PRD 71 (2005) Thermal FD spectrum Distortion from  decay * CMB + LSS data still compatible with large deviations from a thermal neutrino spectrum (degeneracy NT distortion – N eff ) * Better expectations for future CMB + LSS data, but model degeneracy NT- N eff remains

28 Future sensitivities to Σm ν 1.CMB (T+P) + galaxy redshift surveys 2.CMB (T+P) and CMB lensing 3.Weak lensing surveys 4.Weak lensing surveys + CMB lensing When future cosmological data will be available

29 PLANCK+SDSS Lesgourgues, SP & Perotto, PRD 70 (2004) Σm detectable at 2σ if larger than 0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS) Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) = (0.0245, 0.148, 0.70, 0.98, 0.12, Σm ν ) Fisher matrix analysis: expected sensitivities assuming a fiducial cosmological model, for future experiments with known specifications

30 Future sensitivities to Σm ν : new ideas weak gravitational and CMB lensing lensing No bias uncertainty Small scales much closer to linear regime Tomography: 3D reconstruction Makes CMB sensitive to smaller neutrino masses

31 Future sensitivities to Σm ν : new ideas sensitivity of future weak lensing survey (4000º) 2 to m ν σ(m ν ) ~ 0.1 eV Abazajian & Dodelson PRL 91 (2003) sensitivity of CMB (primary + lensing) to m ν σ(m ν ) = 0.15 eV (Planck) σ(m ν ) = eV (CMBpol) Kaplinghat, Knox & Song PRL 91 (2003) weak gravitational and CMB lensing lensing

32 CMB lensing: recent analysis σ(M ν ) in eV for future CMB experiments alone : Lesgourgues et al, PRD 73 (2006)

33 Summary of future sensitivities Lesgourgues & SP, Phys. Rep. 429 (2006) 307 Future cosmic shear surveys

34 End of 3rd lecture


Download ppt "Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν."

Similar presentations


Ads by Google