Download presentation

Presentation is loading. Please wait.

Published byJazmyn Blackmon Modified over 3 years ago

1
All Particle Simulation of a Cathodic Arc Plasma I.J. Cooper D. R. McKenzie Tim Ruppin and Andrew Rigby

2
Traces left by an arc on tungsten cathode

3
3 Vacuum Arc High Current, Low Voltage discharge in vacuum ambient Current conducted in metal vapor plasma produced by discharge itself from evaporated electrode material Usually plasma production concentrated at cathode spots

4
Ion flow rapid heating of micro- protrusion shock wave traveling to base explosion of micro- protrusion Liquid drops, energetic electrons, ions and atoms ejected from cathode leaving a micro-crater Atoms ionized by electron impact or if density sufficient, self ionization Time Evolution of Cathode Spot Cell Expanding hot dense plasma cell in non- thermal equilibrium layer New ion flow to cathode Ion flow to anode Micro-protrusions on cathode surface

5
Cathodic arc plasma Subspots (fragments) Cells Initial confinement of plasma L = 1×10 -8 m V = 1×10 -24 m 3 Number of ions 10 to 100 Density max ~ 10 26 ions.m 3 Hot e - T e =3x10 4 K Cold ions

6
All particle N body simulation Coulomb forces between electrons and ions U p > 0 U e > 0 U pe < 0

7
r(i, j, t) small problems r(i, j, t) r(i, j, t) + Problem: Lots of particles – lots of calculations

8
Can modify equations to include external electric and magnetic fields x j (t+1): q j E x t 2 F B = q v x B B x =0, B y = 0, B z v z = 0 x(t+1): G 2 [2x(t) + (G 1 2 -1)x(t-1) + 2G 1 y(t) – 2G 1 y(t-1)] G 1 = t B z /2m G 2 = 1 / (1+G 1 2 )

10
Software MATLAB slow need to remove loops by using array operations qq = meshgrid(q,q) xx = meshgrid(x_1,x_1); yy = meshgrid(y_1,y_1); zz = meshgrid(z_1,z_1); xd = xx - xx'; yd = yy - yy'; zd = zz - zz'; rd = sqrt(xd.^2 + yd.^2 + zd.^2); rd = rd + rdMin; rd3 = rd.^3; Sx = (qq.*xd)./rd3; Sy = (qq.*yd)./rd3; Sz = (qq.*zd)./rd3; SSx = -A2.* sum(Sx'); SSy = -A2.* sum(Sy'); SSz = -A2.* sum(Sz'); xfp = 2.*x_1 - x_2 + SSx; yfp = 2.*y_1 - y_2 + SSy; zfp = 2.*z_1 - z_2 + SSz; For each time step t ~ 1x10 -18 s N steps ~ 10 7 :

11
SIMULATIONS single, multiple and mixed charged states H C Ti 10 ps 50 Ti + 50 e -

12
10 ps 100 Ti + 100 e -

13
10 ps 100 Ti + 100 e -

14
0.10 ps 50 Ti + 50 e -

15
10 ps 50 ions 50 e -

16
10 ps 100 Ti + 100 e -

17
10 ps 100 Ti + 100 e -

18
10 ps 100 Ti + 100 e -

19
10 ps 10 26 ion.m -3 K avg ~ 3.8 eV K avg(real) ~ 60 eV 10 28 ion.m -3

20
Initial Volume (m 3 ) Initial Ion density (ion.m -3 ) No. of e - No. of Ti ions Average ion KE (eV) 1.0×10 -24 100×10 24 100100 Ti + 3.8 0.5 1.0×10 -24 30×10 24 3030 Ti + 1.7 0.6 1.0×10 -24 30×10 24 6030 Ti 2+ 9.6 1.2 1.0×10 -24 30×10 24 60 10 Ti + 10 Ti 2+ 10 Ti 3+ 1.8 0.6 8.2 1.2 11.8 1.6

21
10 ps R = Ti 2+ / Ti +

Similar presentations

OK

Methods of Heat Transfer. List as many Methods of Heat Transfer.

Methods of Heat Transfer. List as many Methods of Heat Transfer.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on area of circle Ppt on minimum wages act 2014 Ppt on trans-siberian railway city Ppt on social contract theory and criminal justice Ppt on data handling for class 10 Ppt on ministry of corporate affairs new delhi Ppt on charge-coupled device cameras Ppt on email etiquettes presentation skills Ppt on causes of 1857 revolt Ppt on movable bridge