Download presentation

Presentation is loading. Please wait.

Published byChase Grisby Modified over 3 years ago

1
ZEIT4700 – S1, 2014 Mathematical Modeling and Optimization School of Engineering and Information Technology

2
Optimization - basics Maximization or minimization of given objective function(s), possibly subject to constraints, in a given search space Minimize f1(x),..., fk(x) (objectives) Subject to gj(x) < 0, i = 1,...,m (inequality constraints) hj(x) = 0, j = 1,..., p (equality constraints) Xmin1 ≤ x1 ≤ Xmax1 (variable / search space) Xmin2 ≤ x2 ≤ Xmax2.

3
Classical optimization techniques Section search (one variable) Gradient based Linear Programming Quadratic programming Simplex Drawbacks 1.Assumptions on continuity/ derivability 2.Limitation on variables 3.In general find Local optimum only 4.Constraint handling 5.Multiple objectives Newton’s Method (Image source : http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif) Nelder Mead simplex method (Image source : http://upload.wikimedia.org/wikipedia/commons/9/96/Nelder_Mead2.gif)

4
Classical optimization techniques (cntd.) Gradient based (Cauchy’s steepest descent method) Image source : K. Deb, Multi-objective optimization using Evolutionary Algorithms, John Wiley and Sons, 2002.

5
Optimization – Heuristics/meta-heuristics A heuristic is a technique which seeks good (i.e., near optimal) solutions at a reasonable computational cost without being able to guarantee either feasibility or optimality, or even in many cases to state how close to optimality a particular feasible solution is. - Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Orient Longman (1993)

6
Simple “Hill climb” Start from random X (while termination criterion not met) { Perturb X to get a new point X’ If F(X’) > F(X), move to X’, else not } Maximize f(x) XX’ F(x) XX’ “Greedy” Local

7
Simulated Annealing Start from random X (while termination criterion not met) { Perturb X to get a new point X’ If F(X’) > F(X), move to X’, else Calculate P = exp(-(F(X) – F(X’))/T) move to X’ with probability P } Maximize f(x) XX’ F(x) XX’ Attempts to escape local minima by accepting occasional ‘worse’ moves

8
Genetic / Evolutionary algorithms From point-to-point methods to population based methods.. EAs are nature inspired optimization methods which search for the optimum solution(s) by evolving a population of solutions. Require no assumptions on differentiability / continuity of functions, hence can handle much more complex functions as compared to classical optimization techniques. Can deliver the whole Pareto Optimal Front in a single run as opposed to conventional methods. Its an Intelligent hit and trial !

9
Evolutionary Algorithms (EA) Initialization (population of solutions) Parent selection Recombination / Crossover Mutation Ranking (parent+child pop) Reduction Termination criterion met ? Yes No Output best solution obtained “Evolve” childpop Evaluate childpop

10
Gen 1 Gen 25 Gen 50 Gen 100 Evolutionary Algorithms (contd.)

11
Evolutionary Algorithm (cntd) Minimize f(x) = (x-6)^2 0 ≤ x ≤ 31 Binary GAReal Parameter GA RepresentationBinaryReal Parent selectionBinary tournatment/ Roulett wheel Binary tournatment/ Roulett wheel CrossoverOne point/multi-pointSBX,PCX … MutationBinary flipPolynomial

12
Resources Course material and suggested reading can be accessed at http://seit.unsw.adfa.edu.au/research/sites/mdo/ Hemant/design-2.htm http://seit.unsw.adfa.edu.au/research/sites/mdo/ Hemant/design-2.htm

Similar presentations

OK

Constraints Satisfaction Edmondo Trentin, DIISM. Constraint Satisfaction Problems: Local Search In many optimization problems, the path to the goal is.

Constraints Satisfaction Edmondo Trentin, DIISM. Constraint Satisfaction Problems: Local Search In many optimization problems, the path to the goal is.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on e governance in india Ppt on building management system Ppt on area and perimeter of rectangle Free ppt on sustainable development Ppt on fairs and festivals of india Ppt on sources of energy for class 8th result Ppt on statistics and probability tutorial Ppt on any one mathematician turing Free download ppt on motivation theories Ppt on chapter 12 electricity