Download presentation

Presentation is loading. Please wait.

Published byCelia Homans Modified over 3 years ago

1
Factoring Trinomials ax 2 + bx + c (a > 1) Model the following by drawing rectangles with the given areas. Label the sides. Factor the area/polynomial. (Hint: Since the sides multiply to equal the area, the sides are the factors.) (Hint: Since the sides multiply to equal the area, the sides are the factors.) a) 2x 2 + 7x + 6

2
Factoring Trinomials ax 2 + bx + c (a > 1) Model the following by drawing rectangles with the given areas. Label the sides. Factor the area/polynomial. (Hint: Since the sides multiply to equal the area, the sides are the factors.) (Hint: Since the sides multiply to equal the area, the sides are the factors.) a) 2x 2 + 7x + 6 2x 3 2x 3 x 2x 2 + 7x + 6 x 2x 2 + 7x + 6 =(2x + 3)( x + 2) =(2x + 3)( x + 2) 2

3
Factoring Trinomials ax 2 + bx + c (a > 1) b) 2x 2 + 9x + 4 c) 3x 2 + 11x + 6 d) 2x 2 + 3x – 9 e) 2x 2 – 7x + 3 f) 2x 2 + 5x – 12 g) 3x 2 - 16x + 16 h) 2x 2 – 7x – 4 i) 3x 2 - x - 4 j) 5x 2 + x – 18 k) 3x 2 - 4x - 15 l) 3x 2 + 4x + 1 m) 4x 2 + 4x – 15 n) 2x 2 – x – 1 o) 2x 2 + 5x + 2 p) 3x 2 - 5x – 2 q) 3x 2 - 4x + 1 r) Create your own trinomial of the form ax 2 + bx + c that can be factored. Factor.

4
Factoring Trinomials ax 2 + bx + c (a > 1) - Conclusions Have any conclusions/rules been discovered about factoring ax 2 + bx + c other than drawing rectangles and determining the sides? Ex. 2x 2 + 5x – 12

5
Factoring Trinomials ax 2 + bx + c (a > 1) - Conclusions Have any conclusions/rules been discovered about factoring ax 2 + bx + c other than drawing rectangles and determining the sides? Ex. 2x 2 + 5x – 12 2x -3 2x -3 x 2x 2 + 5x – 12 x 2x 2 + 5x – 12 = (2x - 3)( x + 4) = (2x - 3)( x + 4) 4 Have you noticed anything about the terms here? 4 Have you noticed anything about the terms here? x to = singles ( -3 x 4 = -12) x to = singles ( -3 x 4 = -12) and 2 x 4 + (-3) = 5 and 2 x 4 + (-3) = 5

6
Factoring Trinomials ax 2 + bx + c (a > 1) - Conclusions Although the previous observations are true they may not help that much. If applied to 2x 2 + 9x + 4 it would require you to find two #’s that multiply to equal 4 while also finding a # that multiplies by one of the factors used above plus the other to equal the 9. ex. 2x 2 + 9x + 4 ex. 2x 2 + 9x + 4 (?x + ?)(x + ?) (?x + ?)(x + ?) x to equal 4 x to equal 4

7
Factoring Trinomials ax 2 + bx + c (a > 1) - Conclusions Although the previous observations are true they may not help that much. If applied to 2x 2 + 9x + 4 it would require you to find two #’s that multiply to equal 4 while also finding a # that multiplies by one of the factors used above plus the other to equal the 9. ex. 2x 2 + 9x + 4 ex. 2x 2 + 9x + 4 (?x + ?)(x + ?) (?x + ?)(x + ?) x to equal 4 x to equal 4 and x + = 9 and x + = 9 For most of us, drawing or at least thinking about a rectangle may be the best option. For most of us, drawing or at least thinking about a rectangle may be the best option.

Similar presentations

OK

X-box Factoring. Step 1: Set up X- Box Factor ax 2 + bx + c Product a c Sum b.

X-box Factoring. Step 1: Set up X- Box Factor ax 2 + bx + c Product a c Sum b.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Download ppt on civil disobedience movement gandhi Ppt on id ego superego quiz Ppt on uses of water Ppt on directors under companies act 1956 Ppt on metallic and non metallic minerals Ppt online application form 2016/2017 Ppt on class 10 hindi chapters Free ppt on 5g wireless communication technology Ppt on 2 stroke ic engine plans Ppt on cross site scripting virus