Download presentation

1
X and Y Intercepts

2
**The y intercept is the point at which the graph of an equation crosses the y axis.**

y = 2x + 3 y (0,3) x

3
**The y intercept is the point at which the graph of an equation crosses the y axis.**

y = 2x + 3 y Notice that the x value is zero. (0,3) x

4
**The x intercept is the point at which the graph of an equation crosses the x axis.**

y = 2x + 3 y (-3/2 ,0) x

5
**The x intercept is the point at which the graph of an equation crosses the x axis.**

y = 2x + 3 y (-3/2 ,0) x Notice that the y value is zero.

6
**Example #1 Find the y and x intercepts. Then graph the line.**

y = 2x + 6

7
**Example #1 Find the y and x intercepts. Then graph the line.**

y = 2x + 6 y intercept y = 2(0) + 6 y = 6 (0,6)

8
**Example #1 Find the y and x intercepts. Then graph the line.**

y = 2x + 6 y intercept y = 2(0) + 6 y = 6 (0,6) x intercept 0 = 2x + 6 x = -3 (-3,0)

9
**Example #1 Find the y and x intercepts. Then graph the line.**

y = 2x + 6 y (0,6) (-3,0) x

10
**Example #1 Find the y and x intercepts. Then graph the line.**

y = 2x + 6 y (0,6) (-3,0) x

11
**Example #2 Find the y and x intercepts. Then graph the line.**

y = 3x + 12

12
**Example #2 Find the y and x intercepts. Then graph the line.**

y = 3x + 12 y intercept y = 3(0) y = 12 (0,12)

13
**Example #2 Find the y and x intercepts. Then graph the line.**

y = 3x + 12 y intercept y = 3(0) y = 12 (0,12) x intercept 0 = 3x x = -4 (-4,0)

14
**Example #2 Find the y and x intercepts. Then graph the line.**

y = 3x + 12 y (0,12) (-4,0) x

15
**Example #2 Find the y and x intercepts. Then graph the line.**

y = 3x + 12 y (0,12) (-4,0) x

16
Practice Time

17
**For each function, find the x and y intercepts. Then graph the line.**

18
1) y = ½ x + 4

19
**1) y = ½ x + 4 y intercept y = ½ (0) + 4 y = 4 (0,4)**

x intercept 0 = ½ x + 4 x = -8 (-8,0)

20
1) y = ½ x + 4 y (0,4) (-8,0) x

21
2) y = -2 x + 8

22
**y intercept y = -2 (0) + 8 y = 8 (0,8)**

2) y = -2 x + 8 y intercept y = -2 (0) + 8 y = 8 (0,8) x intercept 0 = -2 x + 8 x = 4 (4,0)

23
2) y = -2 x + 8 y (0,8) (4,0) x

24
3) y = -3x - 4

25
**3) y = -3x - 4 y intercept y = -3 (0) - 4 y = -4 (0,-4)**

x intercept 0 = -3 x - 4 x = -4/3 (-4/3,0)

26
3) y = -3x - 4 y (-4/3,0) x (0,-4)

27
4) y = 8x - 2

28
**y intercept y = 8 (0) - 2 y = -2 (0,-2)**

4) y = 8x - 2 y intercept y = 8 (0) - 2 y = -2 (0,-2) x intercept 0 = 8 x - 2 x = 1/4 (1/4,0)

29
4) y = 8x - 2 y (1/4,0) x (0,-2)

30
5) 2x + 3y = 6

31
**5) 2x + 3y = 6 y intercept 2(0) + 3y = 6 y = 2 (0,2)**

x intercept 2x + 3(0) = 6 x = 3 (3,0)

32
5) 2x + 3y = 6 y (0,2) (3,0) x

33
6) 5x + 2y = 10

34
**6) 5x + 2y = 10 y intercept 5(0) + 2y = 10 y = 5 (0,5)**

x intercept 5x + 2(0) = 10 x = 2 (2,0)

35
6) 5x + 2y = 10 y (0,5) (2,0) x

36
7) -3x + 5y = 9

37
**7) -3x + 5y = 9 y intercept -3(0) + 5y = 9 y = 9/5 (0,9/5)**

x intercept -3x + 5(0) = 9 x = -3 (-3,0)

38
7) -3x + 5y = 9 y (0,9/5) (-3,0) x

39
8) -2x - 3y = 10

40
**8) -2x - 3y = 10 y intercept -2(0) - 3y = 10 y = -10/3 (0,-10/3)**

x intercept -2x - 3(0) = 10 x = -5 (-5,0)

41
8) -2x - 3y = 10 y (-5,0) (0,-10/3)

Similar presentations

Presentation is loading. Please wait....

OK

Roots, Zeroes, and Solutions For Quadratics Day 2.

Roots, Zeroes, and Solutions For Quadratics Day 2.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google