Download presentation

Presentation is loading. Please wait.

Published byLucia Ellard Modified over 2 years ago

1
Is there anything more to RS than just recommending movies and songs?

2
Problem 1: Recommending Composite Objects Sets of items (e.g., camera and accessories) Sequences (list of songs) Weighted paths (a tour of POIs) More complex structures?

3
Novel recommendation problems Application 1: Travel Planning! User visits Vancouver for the first time. Has one day to spare. Wants to keep the budget, say, under $500. Maybe additional constraints on time, preferred routes etc.

4
Novel Rec. problems Application 2: Bundle Shopping! User wants to buy a smart phone & accessories Looking for smart phone plus contract Budget aware, requirements on minutes & data

5
Novel rec. problems Application 3: Buy a camera and accessories under constraints OR How to find a pack of tweeters to follow without being overwhelmed? How to find a bunch of interesting podcasts / songs / movies to kill the next 10 boring hours on the plane?

6
Package/Set Recommendation

7
Breaking out of the box

8
Composite RS – An Architecture Item Rating Item Recommendation Cost Budget Item Recommendation External Cost Source t1 t2 t3 p1p1 p2p2

9
What’s the Composite RS Problem? Input to the composite recommender system – Item rating / value obtained from item recommender system Items are accessed in the non-increasing order of their ratings – Item cost information obtained from external cost source Can either be obtained for “free” or randomly accessed from cost source Access Cost – Sorted Access Cost + Random Access Cost # of items accessed.

10
So what’s the problem, again?

11
Composite Recommendation Problem Background cost information – Assumed in this paper. Global minimum item cost. – More sophisticated alternative possible E.g., Histogram

12
Criteria for the CompRec Problem Generate high quality package recommendations automatically – Quality ::= Sum of (predicted) item ratings in the package Minimize number of items to be accessed, i.e., #getNextBest(.) calls to RS.

13
Compatibility

14
Efficient Package Recommendation System Overview Composite Recommendation – Instance Optimal Approximation Algorithm – Heuristic based Approximation Algorithm – Handling Compatibility Empirical Study Related Work

15
Quality Guarantee & Access Cost Minimization Approximation Algorithm (V.V. Vazirani’01) – α approximation (1 < α) Recall: Instance Optimality (Fagin et.al. PODS’01) – Given a class of algorithms, a class of input instances – Given a cost function (# of items accessed) – Guarantee the cost of the proposed algorithm on any instance is at most β times the cost of any algorithm in the same class

16
Instance Optimal Approximation Algorithm Access items from RecSys Calculate Upper Bound Value of Optimal Solution Check stop criteria Calculate optimal solution using seen items N: Input items, B: Budget BG: Background information

17
Cost Budget : 10 α = 2 c min = 2 Best possible unseen items Example ItemRatingCost t1t1 52 t2t2 52 t3t3 43 t4t4 44 t5t5 42 t6t6 33 t7t7 22 t8t8 22 t9t9 22

18
Instance Optimality of InsOpt-CR

19
Problem 2: Combining the power of RS and SN When users rate items, those signals are used as a basis of future recommendations, i.e., user ratings influence future recommendations. Can we launch a targeted marketing campaign over an existing operational Recommender System? Pick seed users for rating an item to produce a large scale rec. of an item, by the RS? RecMax. Amit Goyal and L. RecMax: Exploting Recommender Systems for Fun and Profit. KDD 2012.

20
Consider an item in a Recommender System 20 Some users rate the item (seed users) Because of these ratings, the item may be recommended to some other users. Flow of information RecMax: Can we strategically select the seed users?

21
RecMax 21 Seed Users Flow of information Recommendees Select k seed users such that if they provide high ratings to a new product, then the number of other users to whom the product is recommended (hit score) by the underlying recommender system algorithm is maximum.

Similar presentations

OK

On Specification and Verification of Location- Based Fault Tolerant Mobile Systems Alexei Iliasov, Victor Khomenko, Maciej Koutny and Alexander Romanovsky.

On Specification and Verification of Location- Based Fault Tolerant Mobile Systems Alexei Iliasov, Victor Khomenko, Maciej Koutny and Alexander Romanovsky.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on resources and development of class 10 Simple ppt on body language Ppt on forward rate agreement notation Ppt on pf and esic Ppt on views in dbms Ppt on abo blood grouping antigens Ppt on chemical and magnetic effect of electric current Water cycle for kids ppt on batteries Ppt on water scarcity in the middle east Insect anatomy and physiology ppt on cells