Presentation is loading. Please wait.

Presentation is loading. Please wait.

Life of Synthetic CO2, Environmental Impact,

Similar presentations


Presentation on theme: "Life of Synthetic CO2, Environmental Impact,"— Presentation transcript:

1 Life of Synthetic CO2, Environmental Impact,
Chemical Synthesis and Industrial Applications William Schulz Bechara Charette Group - Literature Meeting May 2nd, 2012

2 World's Top Market Value
The world still relies heavily today on fossil fuels to cover about 80% of its energy needs 1) Oil&Gas : 5 2) Telecommunication : 2 3) Eletronics : 4 4) Pharma : 3 5) Food : 2 6) Natural Resources Exploration : 2 7) Bank : 3 8) Consumer goods & Retailing : 3 9) Internet :1 3 1 7 5 6 2 9 8 4

3 CO2 – One of the Largest Waste Product
The world still relies heavily today on fossil fuels to cover about 80% of its energy needs Electricity Without Carbon, Nature News Feature, 14 August 2008, 454.

4 Global Warming? Image from - by Berkeley Earth Surface Temperature Institute. Retrieved

5 Global Warming? Year a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res. 2001, 106, b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science 2002, 295, c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG  

6 CO2 vs Global Warming? Petit, J. R et al Nature 1999, 399, 429.

7 CO2 and Global Warming? [...] records suggests a close link between CO2 and climate [...] The role and relative importance of CO2 in producing these climate changes remains unclear [...] a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987, 329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, f) Shakun, J. D. et al. Nature 2012, 484, 49.

8 CO2 Emissions Going Up Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

9 CO2 Emissions : Natural vs Human (Anthropogenic CO2)
3.2 GtC/y in 1990 24 GtC/y in 2010 Gigatons of C/year  Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

10 Life of Synthetic CO2 Image from by  Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved

11 CO2 Storage / Enhanced Oil recovery
a) Image from by Matt Williams, Carbon Capture, Universe Today news. Retrieved b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved

12 CO2 Storage / Enhanced Oil recovery
a) Image from by Matt Williams, Carbon Capture, Universe Today news. Retrieved b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved

13 CO2 Emissions – CCS Project
Image from - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

14 Carbon Capture and Storage (CCS) Project
Image from - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

15 CCS Project - Operational
Image from - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

16 CO2 Scrubbing (Purification)
O2, N2 and other gas Amines MgO M-oxides Cold Hot CO2, H2O, CO, O2, N2 and other gas MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.

17 Recycling CO2  Only 1% of the total CO2 on Earth is currently being used for chemical synthesis : Chemical inertness, CO2 capture and storage is expensive. Recycling CO2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

18 Other use of CO2 Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

19 Annual industrial use of CO2 in megatons
3.2GtC/y in 1990 24GtC/y in 2010 Gigatons of C/year  Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

20 Properties of CO2 as Ligand
- Thermodynamically stable - High energy substances required Coordination Modes a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

21 CO2 Reduction a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

22 CO2 Reduction “Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large-scale productions.” a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

23 Reduction Potential of CO2 at pH=7
CO2 + 1e- CO2•- E0 = V CO2 + 2H+ 2e- HCO2H E0 = V CO + H2O E0 = V CO2 + 4H+ 4e- H2CO + H2O E0 = V CO2 + 6H+ 6e- CH3OH + H2O E0 = V CO2 + 8H+ 8e- CH4 + 2H2O E0 = V a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev. 2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

24 Reduction of CO2 to CO  Reverse water gas shift (RWGS) is the most promising process : - Metal : Cu, Cu/SiO2, Cu–Ni/Al2O3, Cu/ZnO, Cu–Zn/Al2O3, Pd/Al2O3, Pt/Al2O3, Pt/CeO2, Ni/CeO2, Rh/SiO2 (from Rh2(OAc)4) - Temperature : >600 °C - Cu-based systems remain mostly used. - Often reduction to CH4 occurs since CO is a better ligand than CO2 a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A 2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A 1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

25 Reduction of CO2 to CO a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal. 1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

26 Reduction of CO2 to CO Mechanism with Pt/CeO2
a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem. B 2004, 108, c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

27 Photochemical Reduction of CO2 to CO
Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

28 1st Photochemical Reduction Using Ru Complex
Recent Advances : Reducing catalyst Photocatalyst Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

29 Reduction of CO2 to CH4 - Sabatier Reaction
 Important catalytic process for the production of syngas (CH4 and H2) - Thermodynamically favoured. - Metal = Ni, Ru, Rh, Pd, Pt. - Oxide support : SiO2, TiO2, Al2O3, ZrO2, CeO2, MgO, ZrO2, NiO, NiAl2O2. - Temperature : °C - Dispersion and surface of oxides is important. - Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO2 at 76% conversion and a selectivity to CH4 (vs CO and MeOH) of 99%. - Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce0.72Zr0.28O2 in pace colonization on Mars to convert the Martian CO2 into CH4 and H2O for fuel and astronaut life-support systems. a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev. 1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal. 2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal. 2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A 2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

30 Potential Bifunctional Model for Pd/MgO Catalysis
a) Park, J. N.; McFarland, E. W. J. Catal. 2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

31 Synthesis of Hydrocarbons
- Gasification of coal, synthesis of syngas : - Fischer-Tropsch process : 300,000 barrels of hydrocarbons/year - Modification to CO2 : - Metal : Cu, Fe, Co. - Support : Al2O3, Mn, Zr, Zn. Reaction are limited to small chains, H2O formed suppresses the reaction and they are not cost effective in most cases. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355.

32 CO2 to MeOH - Metals : Ag, Au, Pd, Cu
- Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr. - Temperature : °C - Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH4) at 260 °C 40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and acetic acid. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

33 Potential CO2 to MeOH in Industry
82% of conversion a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/ A1, c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13. d) Image from – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc., New energy and fuel news.

34 Synthesis of HCOOH X Y Y X
Synthesis of HCOOH from CO2 is still limited. X Y Y X Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

35 Synthesis of HCOOH Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

36 Synthesis of HCOOH Analysis by H NMR :
Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

37 Combustion Heat of Fuels in Higher Heating Value (HHV)
George A. Olah et al. : [...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...]. a) Image from – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487.

38 CO2 in Organic Chemistry
Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

39 Industrial Synthesis of Salicylic Acid
a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

40 Urea Synthesis and Derivatives
Mesoporous silica a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

41 Reaction of CO2 with Organometallic Reagents
a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

42 Dialkyl Carbonate Synthesis
With Phosgene : With CO2 : Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

43 Dimethyl Carbonate Synthesis
Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

44 Dimethyl Carbonate Synthesis from Epoxides
a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71

45 Catalyst / cocatalyst / epichlorohydrin
Polymerization 2.0 MPa Catalyst / cocatalyst / epichlorohydrin 1/1/1000 (molar ratio) Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133,

46 C-C Bond Formation Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133,

47 Synthesis of a Cyclic Carbonate from an Oxirane
a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics 1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.

48 Reaction of CO2 with Organometallic Reagents
a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

49 Possible Catalytic Synthesis of Acrylic Acid
“b-H elimination is not favored for steric reasons: the rigid five membered ring does not allow the b-H atoms to come close to the nickel center.” a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.

50 No Catalysis Possible a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

51 Catalysis with MeI <56% MeI decomposes the Ni complex
a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

52 Ni-Catalyzed Stereoselective Ring-Closing Carboxylation
a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

53 Ni-Catalyzed Stereoselective Ring-Closing Carboxylation
Reductive elimination Bisallyl species b-H elimination L : Phosphine ligand ZnEt2 : Transmetalation & reduction of Ni a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

54 Coupling of CO2 and Alkynes
+ + <10% a) Inoue, Y.; Itoh, Y.; Hashimoto, H. Chem. Lett. 1977, 85. b) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

55 Ni- Catalyzed Organozinc Coupling with CO2
Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

56 Reaction Mechanism Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

57 Au Catalyzed Carboxylation of C-H Bonds
Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

58 Au Catalyzed Carboxylation of C-H Bonds
Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

59 Au Catalyzed Carboxylation of C-H Bonds Mechanism
Also done with Cu(IPr)Ot-Bu a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, b) Lckermann, L. Angew. Chem. Int. Ed. 2011, 50, 3842.

60 Biomass Synthesis Algae + CO2 + H2O + hn = O2 + Biomass (Biofuel) CO2
RWE's Algae Project, The Niederaussem Coal Innovation Centre,

61 Conclusion A lot of work has been done for CO2 recycling and still a lot of work will have to be done to lower CO2 emissions. Elucidate mechanisms Find more cost-effective methods Incorporate renewable source of energy. ex. solar, etc. Perform cyclic reactions where CO2 is formed and reduced in one reactor providing clean energy. Fuels Renewable Energy Reduction Combustion Energy Why not directly invest in renewable energy???

62 Consolidating Phase for the Pharma
- AstraZeneca announced it is buying Ardea for $1 billion. Watson Pharmaceuticals announced it is buying Actavis for $5.6 billion. J&J stated being days away from closing on its $21 billion acquisition of Synthes. Glaxo got rebuffed from Human Genome Sciences in a $2.6 billion bid. Pfizer announced the $12 billion divestiture of its infant nutritional business to Nestlé. Why?  Blockbusters going off patent Fewer drug approvals Consequences : - Buy companies with solid pipelines that will deliver growth Layoff More partnerships to save $ : ex. Merck : 75 partnerships, Lilly : > 100 partnerships, etc One biotech CEO who had sold his first company for several hundred million dollars, who is now on his second, put it this way to me: “Large pharma can’t develop drugs any more.  They are too slow.  They make decisions for political reasons.  Their hurdles are too high.  They have to keep buying companies like us just to stay innovative.” What's Really Driving The Pharma M&A Frenzy, Forbes,


Download ppt "Life of Synthetic CO2, Environmental Impact,"

Similar presentations


Ads by Google