Presentation is loading. Please wait.

Presentation is loading. Please wait.

William Schulz Bechara Charette Group - Literature Meeting May 2 nd, 2012 Life of Synthetic CO 2, Environmental Impact, Chemical Synthesis and Industrial.

Similar presentations


Presentation on theme: "William Schulz Bechara Charette Group - Literature Meeting May 2 nd, 2012 Life of Synthetic CO 2, Environmental Impact, Chemical Synthesis and Industrial."— Presentation transcript:

1 William Schulz Bechara Charette Group - Literature Meeting May 2 nd, 2012 Life of Synthetic CO 2, Environmental Impact, Chemical Synthesis and Industrial Applications

2 World's Top Market Value 1) Oil&Gas : 5 2) Telecommunication : 2 3) Eletronics : 4 4) Pharma : 3 5) Food : 2 6) Natural Resources Exploration : 2 7) Bank : 3 8) Consumer goods & Retailing : 3 9) Internet :1 31175331621981782483475463117533162198178248347546 The world still relies heavily today on fossil fuels to cover about 80% of its energy needs

3 CO 2 – One of the Largest Waste Product Electricity Without Carbon, Nature News Feature, 14 August 2008, 454. The world still relies heavily today on fossil fuels to cover about 80% of its energy needs

4 Global Warming? Image from http://berkeleyearth.org/analysis - by Berkeley Earth Surface Temperature Institute. Retrieved 2012-05-02.

5 Global Warming? a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res. 2001, 106, 2929. b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science 2002, 295, 5563. c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, 455. d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG2002 1-42. Year

6 CO 2 vs Global Warming? Petit, J. R et al Nature 1999, 399, 429.

7 CO 2 and Global Warming? a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987, 329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, 1394. f) Shakun, J. D. et al. Nature 2012, 484, 49. [...] records suggests a close link between CO 2 and climate [...] The role and relative importance of CO 2 in producing these climate changes remains unclear [...]

8 CO 2 Emissions Going Up Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

9 CO 2 Emissions : Natural vs Human (Anthropogenic CO 2 ) Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. 3.2 GtC/y in 1990 24 GtC/y in 2010 Gigatons of C/year Gigatons of C/year

10 Life of Synthetic CO 2 Image from http://www.theurbn.com/2011/06/capturing-time-bp-and-the-future by Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved 2012-05-02.

11 CO 2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

12 CO 2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

13 CO 2 Emissions – CCS Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

14 Carbon Capture and Storage (CCS) Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

15 CCS Project - Operational Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

16 CO 2 Scrubbing (Purification) O 2, N 2 and other gas ColdHot Amines MgO M-oxides CO 2, H 2 O, CO, O 2, N 2 and other gas MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.

17 Recycling CO 2  Only 1% of the total CO 2 on Earth is currently being used for chemical synthesis : - Chemical inertness, - CO 2 capture and storage is expensive. Recycling CO 2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

18 Other use of CO 2 Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

19 Annual industrial use of CO 2 in megatons 3.2GtC/y in 1990 24GtC/y in 2010 Gigatons of C/year Gigatons of C/year Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

20 Properties of CO 2 as Ligand a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev. 1996, 96, 2063. - Thermodynamically stable - High energy substances required Coordination Modes

21 CO 2 Reduction a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

22 CO 2 Reduction a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063. “Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large- scale productions.”

23 Reduction Potential Reduction Potential of CO 2 at pH=7 CO 2 + 1e - →CO 2 - E 0 = -1.90 V CO 2 + 2H + 2e - →HCO 2 HE 0 = -0.61 V CO 2 + 2H + 2e - →CO + H 2 OE 0 = -0.53 V CO 2 + 4H + 4e - →H 2 CO + H 2 OE 0 = -0.48 V CO 2 + 6H + 6e - →CH 3 OH + H 2 OE 0 = -0.38 V CO 2 + 8H + 8e - →CH 4 + 2H 2 OE 0 = -0.24 V a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev. 2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

24 Reduction of CO 2 to CO  Reverse water gas shift (RWGS) is the most promising process : - Metal : Cu, Cu/SiO 2, Cu–Ni/Al 2 O 3, Cu/ZnO, Cu–Zn/Al 2 O 3, Pd/Al 2 O 3, Pt/Al 2 O 3, Pt/CeO 2, Ni/CeO 2, Rh/SiO 2 (from Rh 2 (OAc) 4 ) - Temperature : >600 °C - Cu-based systems remain mostly used. - Often reduction to CH 4 occurs since CO is a better ligand than CO 2 a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A 2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A 1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

25 Reduction of CO 2 to CO a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal. 1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

26 Reduction of CO 2 to CO Mechanism with Pt/CeO 2 a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem. B 2004, 108, 20240. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

27 Photochemical Reduction of CO 2 to CO Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

28 1 st Photochemical Reduction Using Ru Complex Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346 Recent Advances : Photocatalyst Reducing catalyst

29 Reduction of CO 2 to CH 4 - Sabatier Reaction  Important catalytic process for the production of syngas (CH 4 and H 2 ) a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev. 1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal. 2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal. 2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A 2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. - Thermodynamically favoured. - Metal = Ni, Ru, Rh, Pd, Pt. - Oxide support : SiO 2, TiO 2, Al 2 O 3, ZrO 2, CeO 2, MgO, ZrO 2, NiO, NiAl 2 O 2. - Temperature : 400 - 700 °C - Dispersion and surface of oxides is important. - Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO 2 at 76% conversion and a selectivity to CH 4 (vs CO and MeOH) of 99%. - Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce 0.72 Zr 0.28 O 2 in pace colonization on Mars to convert the Martian CO 2 into CH 4 and H 2 O for fuel and astronaut life-support systems.

30 Potential Bifunctional Model for Pd/MgO Catalysis a) Park, J. N.; McFarland, E. W. J. Catal. 2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

31 Synthesis of Hydrocarbons - Fischer-Tropsch process : - Metal : Cu, Fe, Co. - Support : Al 2 O 3, Mn, Zr, Zn. - Reaction are limited to small chains, H 2 O formed suppresses the reaction and they are not cost effective in most cases. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355. - Gasification of coal, synthesis of syngas : 300,000 barrels of hydrocarbons/year - Modification to CO 2 :

32 CO 2 to MeOH - Metals : Ag, Au, Pd, Cu - Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr. - Temperature : 200-300 °C - Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH 4 ) at 260 °C 40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and acetic acid. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

33 Potential CO 2 to MeOH in Industry 82% of conversion a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/0244208A1, 2007. c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13. d) Image from http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc., New energy and fuel news.

34 Synthesis of HCOOH X Y XY Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301. Synthesis of HCOOH from CO 2 is still limited.

35 Synthesis of HCOOH Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

36 Synthesis of HCOOH Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301. Analysis by H NMR :

37 Combustion Heat of Fuels in Higher Heating Value (HHV) a) Image from http://en.wikipedia.org/wiki/Heat_of_combustion – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. George A. Olah et al. : [...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...].

38 CO 2 in Organic Chemistry Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

39 Industrial Synthesis of Salicylic Acid a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

40 Urea Synthesis and Derivatives a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. Mesoporous silica

41 Reaction of CO 2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

42 Dialkyl Carbonate Synthesis With Phosgene : With CO 2 : Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

43 Dimethyl Carbonate Synthesis Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

44 Dimethyl Carbonate Synthesis from Epoxides a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71

45 Polymerization 2.0 MPa Catalyst / cocatalyst / epichlorohydrin 1/1/1000 (molar ratio) Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

46 C-C Bond Formation Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

47 Synthesis of a Cyclic Carbonate from an Oxirane a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics 1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.

48 Reaction of CO 2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

49 Possible Catalytic Synthesis of Acrylic Acid “  -H elimination is not favored for steric reasons: the rigid five membered ring does not allow the  -H atoms to come close to the nickel center.” a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.

50 No Catalysis Possible a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

51 Catalysis with MeI a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. <56% MeI decomposes the Ni complex

52 Ni-Catalyzed Stereoselective Ring-Closing Carboxylation a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

53 Ni-Catalyzed Stereoselective Ring-Closing Carboxylation L : Phosphine ligand ZnEt 2 : Transmetalation & reduction of Ni  -H elimination Reductive elimination Bisallyl species a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

54 Coupling of CO 2 and Alkynes a) Inoue, Y.; Itoh, Y.; Hashimoto, H. Chem. Lett. 1977, 85. b) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. + + <10%

55 Ni- Catalyzed Organozinc Coupling with CO 2 Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

56 Reaction Mechanism Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

57 Au Catalyzed Carboxylation of C-H Bonds Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

58 Au Catalyzed Carboxylation of C-H Bonds Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

59 Au Catalyzed Carboxylation of C-H Bonds Mechanism a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. b) Lckermann, L. Angew. Chem. Int. Ed. 2011, 50, 3842. Also done with Cu(IPr)Ot-Bu

60 Biomass Synthesis Algae + CO 2 + H 2 O + h = O 2 + Biomass (Biofuel) = CO 2 RWE's Algae Project, The Niederaussem Coal Innovation Centre, http://www.rwe.com/web/cms/en/213188/rwe-power-ag/innovations/coal-innovation- centre/rwes-algae-project/

61 Conclusion  A lot of work has been done for CO 2 recycling and still a lot of work will have to be done to lower CO 2 emissions. - Elucidate mechanisms - Find more cost-effective methods - Incorporate renewable source of energy. ex. solar, etc. - Perform cyclic reactions where CO 2 is formed and reduced in one reactor providing clean energy. Fuels Reduction Combustion Energy Renewable Energy - Why not directly invest in renewable energy???

62 Consolidating Phase for the Pharma What's Really Driving The Pharma M&A Frenzy, Forbes, http://www.forbes.com/sites/davidmaris/2012/04/27/pharma-feeding-frenzy/ - AstraZeneca announced it is buying Ardea for $1 billion. - Watson Pharmaceuticals announced it is buying Actavis for $5.6 billion. - J&J stated being days away from closing on its $21 billion acquisition of Synthes. - Glaxo got rebuffed from Human Genome Sciences in a $2.6 billion bid. - Pfizer announced the $12 billion divestiture of its infant nutritional business to Nestlé. Why? - Blockbusters going off patent - Fewer drug approvals Consequences : - Buy companies with solid pipelines that will deliver growth - Layoff - More partnerships to save $ : ex. Merck : 75 partnerships, Lilly : > 100 partnerships, etc One biotech CEO who had sold his first company for several hundred million dollars, who is now on his second, put it this way to me: “Large pharma can’t develop drugs any more. They are too slow. They make decisions for political reasons. Their hurdles are too high. They have to keep buying companies like us just to stay innovative.”


Download ppt "William Schulz Bechara Charette Group - Literature Meeting May 2 nd, 2012 Life of Synthetic CO 2, Environmental Impact, Chemical Synthesis and Industrial."

Similar presentations


Ads by Google