Download presentation

Presentation is loading. Please wait.

Published byDrew Crichlow Modified over 3 years ago

1
Reaction Quotient-Q- Or Trial K

2
The Keq is a constant- a number that does not change Increasing the Temperature of an endothermic equilibrium shifts right and increases the Keq Increasing a [Reactant] shifts right but maintains the Keq Only temperature changes the Keq Changing the volume, pressure, or any concentration, does not change the Keq.

3
K trial How can you tell if a system is in equilibrium or not? Calculate a trial Keq or Q- reaction quotient. Use initial concentrations in the equilibrium expression to evaluate.

4
K eq KtKt How can you tell if a system is in equilibrium or not? Calculate a trial K eq. Put initial concentrations into the equilibrium expression and evaluate. If K t = K eq equilibrium If K t > K eq KtKt KtKt If K t < K eq Shifts right( to products) Shifts left (to reactants) 52035

5
Shifts right! 2NH 3(g) ⇄ N 2(g) + 3H 2(g) Keq = 10 1.10.0 moles of NH 3, 15.0 moles of N 2, and 10.0 moles of H 2 are put in a 5.0 L container. Is the system in equilibrium and how will it shift if it is not? 2.0 M3.0 M2.0 M Kt= [N 2 ][H 2 ] 3 [NH 3 ] 2 =(3)(2) 3 = 6 (2) 2 Not in equilibrium Kt < Keq

6
Shifts left! 2NH 3(g) ⇄ N 2(g) + 3H 2(g) Keq = 10 2.4.56 x 10 -5 moles of NH 3, 5.62 x 10 -4 moles of N 2, and 2.66 x 10 -2 moles of H 2 are put in a 500.0 mL container. Is the system in equilibrium and how will it shift if it is not? 9.12 x 10 -5 M1.124 x 10 -5 M5.32 x 10 -2 M Kt= [N 2 ][H 2 ] 3 [NH 3 ] 2 =(1.124 x 10 -3 )(5.32 x 10 -2 ) 3 = 20.3 (9.12 x 10 -5 ) 2 Not in equilibrium Kt > Keq

7
3.If 4.00 moles of CO, 4.00 moles H 2 O, 6.00 moles CO 2, and 6.00 moles H 2 are placed in a 2.00 L container at 670 o C. CO (g) + H 2 O (g) ⇄ CO 2(g) + H 2(g) Keq = 1.0 Is the system at equilibrium? Calculate all equilibrium concentrations. Shifts left! Not in equilibrium Kt = (3)(3) (2)(2) = 2.25 +x +x -x -x 2.00 M 2.00 M 3.00 M 3.00 M 2.00 + x 2.00 + x 3.00 - x 3.00 - x K eq = [CO 2 ][H 2 ] [CO][H 2 O]

8
(3 - x) 2 (2 + x) 2 = 1.0 3 - x 2 + x 3 - x = 2 + x 1 =2x x = 0.50 M [CO 2 ]= [H 2 ] =3.00 - 0.50 = 2.50 M [CO]= [H 2 O] =2.00 + 0.50 = 2.50 M

9
Example F A 1.0 L reaction vessel contained 1.0 mol of SO 2, 4.0 mol of NO 2, 4.0 mol of SO 3 and 4.0 mol of NO at equilibrium according to SO 2(g) + NO 2(g) SO 3(g) + NO (g). If 3.0 mol of SO 2 is added to the mixture, what will be the new concentration of NO when equilibrium is re-attained?

10
SO 2(g) + NO 2(g) SO 3(g) + NO (g).

Similar presentations

OK

Equilibrium Calculations Comparing K to Q. Value of the Equilibrium Constant K tells where the equilibrium lies How likely (to what extent) the reaction.

Equilibrium Calculations Comparing K to Q. Value of the Equilibrium Constant K tells where the equilibrium lies How likely (to what extent) the reaction.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on bluetooth based smart sensor networks pdf Ppt on teaching reading skills Ppt on complex numbers class 11th accountancy Ppt on leadership qualities Ppt on classification of salts Ppt on 3 idiots learning Download simple ppt on global warming Convert pdf to ppt online adobe Ppt on structure of chromosomes in eukaryotes Ppt on strategic brand management