Presentation is loading. Please wait.

Presentation is loading. Please wait.

Working Group 6: Technology for Accelerators Summary / Collaboration Opportunities J.A. Clarke (STFC) C.M. Ginsburg (FNAL) P.A. McIntosh (STFC) Proton.

Similar presentations

Presentation on theme: "Working Group 6: Technology for Accelerators Summary / Collaboration Opportunities J.A. Clarke (STFC) C.M. Ginsburg (FNAL) P.A. McIntosh (STFC) Proton."— Presentation transcript:

1 Working Group 6: Technology for Accelerators Summary / Collaboration Opportunities J.A. Clarke (STFC) C.M. Ginsburg (FNAL) P.A. McIntosh (STFC) Proton Accelerators for Science and Innovation 2 nd Annual Meeting Rutherford Appleton Laboratory, UK 3-5.April 2013 Fermilab

2 Working Group 6 Topics RF System Control – PXIE RF Control challenges B Chase (Webex) – Muon Acceleration Challenges at MICE K Ronald – RF control @Daresbury PCorlett o Diagnostics and Instrumentation (Combined with WG4 – see their summaries) – Novel Diagnostics on PXIE Vic Scarpine – Overview of FETS Diagnostics Christoph Gabor – ISIS Diagnostics Development Programme Steve Payne RF System Developments (Combined with WG4 ) – SRF developments at FNAL S Nagaitsev 1125-1150 – SRF developments at Daresbury A Wheelhouse – RFQ developments at RAL A Letchford Test Facilities (Combined with WG4 ) – PXIE Test Facility S Holmes – FETS Overview A Letchford – Test Facilities at Daresbury P McIntosh Industrialisation – SRF Cavity/CM Development at FNAL C.M. Ginsburg – Illinois Accelerator Research Center (IARC) S Holmes – Cryomodule Design for Crab Cavities for LHC-HL S Pattalwar  Collaborative Opportunities April 5, 2013PASI WG6 Summary2

3 April 5, 2013PASI WG6 Summary3 RF System Control

4 April 5, 2013PASI WG6 Summary4

5 Very good control demonstrated (no beam) April 5, 2013PASI WG6 Summary5

6 Challenging timing and synchronisation to generate complex bunch patterns April 5, 2013PASI WG6 Summary6

7 April 5, 2013PASI WG6 Summary7  Collaboration with LBNL

8 Digital upgrade to LLRF has improved performance of buncher cavity April 5, 2013PASI WG6 Summary8

9 Builds on ALICE/VELA experience - same open architecture boards April 5, 2013PASI WG6 Summary9

10 April 5, 2013PASI WG6 Summary10

11 K Ronald April 5, 2013PASI WG6 Summary11

12 April 5, 2013PASI WG6 Summary12 RF System Developments

13 FNAL SRF Programme – S Nagaitsev (FNAL) Extensively utilising ILC SRF R&D from 2006-12 Project-X priority: – 3 GeV CW linac followed by a 3-8 GeV pulsed linac, providing a very powerful intensity frontier accelerator complex – Presents new challenges: – 6 different cavities optimized for changing proton velocities (β) – 4 different frequencies (162.5, 325, 650, 1300 MHz) – 5 of these cavities are completely new for Project X (vs 2 for SNS, 1 for CBEAF) – Requires development of 7 different styles of cryomodules April 5, 201313PASI WG6 Summary

14 650 MHz CW Cavities and CMs are a design challenge Modification of cryomodule design developed for ILC …but must accommodate large (250 W) heat loads at 2 K Lots of detailed engineering remains Collab with India  Blade Tuner End Tuner  April 5, 201314PASI WG6 Summary  CW mechanical cavity/tuner/He vessel design common issues

15 1.Develop SRF fabrication capability with Shakespeare Engineering (UK): – 3 cavities fabricated: SN 01 processed and tested at Jlab – BCP processed – achieved 23 MV/m @ 10 10 SN 02 being processed and tested at Daresbury – BCP processed – problems being resolved with infrastructure SN 03 successfully qualified at FNAL during 2012: – EP processed – achieved 25 MV/m @ 1.5 x 10 10 – Further (tumble) processing completed; another test expected today SRF Development at Daresbury – A Wheelhouse (STFC) April 5, 201315PASI WG6 Summary  Cavity vendor qualification and surface processing R&D common issues

16 9-cell Fabrication Development 3-year programme on-going Cavity drawings complete Tooling has been manufactured Pressing trials being completed at Shakespeare with Copper: – Assessing repeatability and reproducibility  Niobium half cells to be pressed soon Further beampipe spinning trials – Thicker sheets SRF infrastructure development at Daresbury: – Automated BCP process – Automated HPR  It is hoped that FNAL can continue to assist in qualifying Shakespeare with this structure. 9-cell cavity drawings BCP facility HPR stand April 5, 201316PASI WG6 Summary Wheelhouse  Cavity vendor qualification common issues

17 SRF Cryomodule Development Lead design of a new, high current and world leading CM. To educate and demonstrate effective: – Processing, – Handling, – Assembly, – Testing, – QA processes. To integrate the new CM onto ALICE Commission CM + cryogenics systems To validate CM performance with beam Existing Cryomodule on ALICE ERL (New) Cryomodule ALICE April 5, 201317PASI WG6 Summary  CW operation common issues Wheelhouse

18 1300 MHz Development for ILC and PX Accomplishments: – Improved cavity gradients and yield – ANL/FNAL EP facility: world class throughput & yield – 70 cavities ordered, many from U.S., 43 VTS tested, 20 cavities dressed – CM1 assembled (DESY kit) and cold test complete – Installing CM2, 1st high gradient U.S. Cryomodule (ave 31.5 MV/M = goal) – Parts for 4 more 1.3 GHz cryomodules purchased ( ARRA funds) Extensive 1300 MHz infrastructure operational April 5, 201318PASI WG6 Summary Nagaitsev

19 SRF CM Integration @ DL ParameterALICETarget Frequency (GHz)1.3 Number of cavities22 Number of Cells per Cavity97 Cavity Length (m)1.0380.807 Cryomodule Length (m)3.6 R/Q (Ω)1036762 E acc (MV/m)12 - 15>20 CM Energy Gain (MeV)27>32 QoQo <5 x10 9 >1x10 10 Q ext 4 x 10 6 4x10 6 - 10 8 Max Cavity Fwd Power (kW)10 SW20 SW CW Coupler Testing CM Assembly Offline Cryogenic Testing April 5, 201319PASI WG6 Summary McIntosh

20 Collaboration Opportunities at DL Cryomodule installed and cooled to 2K Optimisation presently being performed on the cryogenic system Evaluation Programme: Establish gradient and Q 0 Measure Lorentz force detuning at high gradient Performance measurements with piezo tuners Determine DLLRF control limitations wrt Q ext Evaluate the effect of beam loading with DLLRF, piezo control for various Q ext levels under pulsed and CW conditions Characterise cavities in CW mode at high gradient: – Evaluate thermal transients across cavity string and 2-phase line Synergies with PXIE operational requirements to be evaluated April 5, 201320PASI WG6 Summary McIntosh

21 RFQ Development @ RAL – A Letchford (STFC) FETS RFQ to deliver a 3 MeV, 60 mA H- beam with an rms emittance of ~0.3 π mm mrad. Pulsed RFQ operating up to 2 ms pulses at 50 Hz PRF. 324 MHz chosen to make use of the readily available Toshiba pulsed klystron (J-PARC klystron).  Goal of FETS is to demonstrate beam chopping: – RFQ not required to be state of the art or necessarily push the boundaries of RFQ design. Goal was to produce a reliable design with the ability to be fixed in event of failure. ‘Integrated' design philosophy adopted: – single master RFQ CAD model used for all other simulation and modelling to ensure absolute consistency. April 5, 201321PASI WG6 Summary

22 22 FETS RFQ Development FETS RFQ output from multi particle simulation using measured LEBT input beam ‘Clover leaf' 4-vane geometry with circular outer segments for high shunt impedance. Construction – Bolted not Brazed Viton 3D seal April 5, 2013PASI WG6 Summary Letchford

23 FETS RFQ Status Completed Engineering Design Final machining is underway April 5, 201323PASI WG6 Summary Letchford  Possible opportunity to perform post-simulation analysis of the as-built performance

24 April 5, 2013PASI WG6 Summary24 Test Facilities

25 Project X Injector Experiment (PXIE) Steve Holmes Superconducting RF Technology Map  =0.11  =0.22  =0.51  =0.61  =0.9 325 MHz 10-177 MeV  =1.0 1.3 GHz 3-8 GeV 650 MHz 0.18-3 GeV CW Pulsed 162.5 MHz 0.03-11 MeV LEBTRFQMEBT RT PXIE April 5, 2013PASI WG6 Summary25

26 PXIE Scope CW H - source delivering 5 mA at 30 keV LEBT with beam pre-chopping CW RFQ operating at 162.5 MHz and delivering 5 mA at 2.1 MeV MEBT with integrated wide-band chopper and absorber –Capable of generating arbitrary bunch patterns at 162.5 MHz, and disposing of 4 mA average beam current Low beta superconducting cryomodules: 1 mA to ~25 MeV –HWR and SSR1 Beam dump capable of accommodating 2 mA at 25 MeV (50 kW) for extended periods. Associated beam diagnostics, utilities and shielding –Extinction measurement to 10 -9 (goal)  Common interest in chopped beam absorbers, CW SRF April 5, 2013 PASI WG6 Summary26

27 Data exist!  Common interest in chopped beam absorbers April 5, 2013PASI WG6 Summary27

28 Peter McIntosh ALICE VELAEMMA April 5, 2013PASI WG6 Summary28

29 New Cryomodule in ALICE  Common interest in CW SRF cryomodule design and operation McIntosh April 5, 2013PASI WG6 Summary29

30 VELA Transverse Deflecting Cavity Beam Diagnostic 3-cell TDC prototype (RI GmbH)  Common interest in (room temperature) deflecting cavity development with PrX McIntosh April 5, 2013PASI WG6 Summary30

31 April 5, 2013PASI WG6 Summary31 Industrializ(s)ation

32 FNAL SRF Cavity/CM Industrialization  ILC has provided a great opportunity for US SRF industrial development  Cavity fabrication and processing vendor development  Cavity/cryomodule value engineering exercises ongoing for future projects  Existing industrialization workshops (ILC) provide a resource for understanding cost reduction targets: niobium material, cavity fabrication, industry regional differences, CM fabrication  PAC10 Kyoto satellite meeting  SRF2011 Chicago satellite meeting TE1PAV001 April 5, 201332PASI WG6 Summary Ginsburg

33 A partnership between Department of Energy and the State of Illinois  To enable Fermilab to work more closely with industry and university partners on Accelerator Technology Development and Accelerator Education To develop new accelerator technology based products and high tech industries in the U.S. ( especially Illinois) New IARC building and re-use of CDF assembly building and infrastructure More than a dozen industries have expressed interest, the deep pit area is particularly interesting to them IARC: What is it? 33 Holmes April 5, 2013PASI WG6 Summary

34 34 Illinois Accelerator Research Center CDF Heavy Assembly bldg State funded Office Technical Engineering bldg 48,000 gross square footage 23,000 SF of Office Space (145 offices); 3,700 SF Light Tech Space 3,900 SF New Lecture Hall (175 seats); 900 SF Meeting Rooms New 250 car parking lot March 26, 2013 Holmes PASI WG6 SummaryApril 5, 2013

35 Steady Progress on the IARC physical plant. 1 st availability in FY15 for projects Anticipate OHEP Accelerator Stewardship funds in FY15 to hire staff and fund the initial program (funding announcement) Working on business model, DOE user facility designation Important that we define the rules for Industry/users! Even without a “formal” IARC program announcement there is lots of interest from Industry Unique opportunity for Industry, Universities, Entrepreneurs IARC - Conclusions See Web site Holmes  Many common features with UK lab-business partnerships April 5, 2013PASI WG6 Summary 35

36 LHC High Lumi Upgrade Crab Cavities Crabbing foreseen as part of the high luminosity upgrade Three cavity designs now being validated by int’l partners Design validation with SPS Cryomodule design in progress PASI WG6 Summary 36 Pattalwar April 5, 2013PASI WG6 Summary36

37 LHC/SPS CC boundary conditions Cavity Operating temperature, magnetic shielding, helium vessel, coupler interfaces (remove LOM, HOM), tuner mechanism, dynamic heat load… LHC: two beam pipes, heat load due to beams, helium vessel geometry SPS Layout: cramped space, third beam pipe, RF coupler orientation, integration Cryogenic services Cooling capacity at various temperatures, cooling processes, ports and interfaces, operating modes, …  Regulation and directives  Mechanical design, pressure relief, volumes, pipe sizes, methods of QC Other Lessons learned, schedule, cost, market April 5, 2013PASI WG6 Summary37 1000mm 413mm 420mm 194 mm RF input coupler SPS by-pass line Pattalwar Triple tube cavity support system  US/UK collaboration opportunity

38 April 5, 2013PASI WG6 Summary38 Collaboration Opportunities

39 Collaboration Opportunities (1/3) MICE (K. Ronald) Key areas of collaboration currently ongoing, also heavily involving LBNL – FNAL testing of the first cavity and coupling coils FNAL assembly of LBNL cavities in single cavity test module Testing achievable gradient in no magnetic field, fringe field and flat field configurations FNAL will test the RFCC coupling coils – Transfer of experience to RAL for MICE experiment – DL developing power amplifier and control systems- interface to cavity systems developed in US – RF distribution network designed in UK, procured in US – RAL will assemble hardware and expertise, perform the MICE experiment – MICE experiment will feed back into US interest in Muon Accelerators Opportunities for further collaboration – Determination of muon phase and gradient history Strathclyde, Imperial, Sheffield and DL currently looking at this problem April 5, 201339PASI WG6 Summary

40 Collaboration Opportunities (2/3) RFQ’s – Both the FETS and PXIE RFQ developments are well advanced, not much opportunity to collaborate on design issues. – However there’s an opportunity to perform post-simulation analysis of the performance achieved for both RFQ designs Complete multi-physics (EM/thermal/particle-tracking) verification would be extremely beneficial to both FETS and PXIE. Digital LLRF Collaborative Opportunities – Major developments at FNAL & STFC in DLLRF for new programmes – Ongoing collaboration LBNL/STFC – Use of open source architectures has big benefits – Excellent opportunity for collaboration in RF control, optimisation of feedback and feed forward algorithms, timing and synchronisation, etc of relevance to PXIE, PX, ALICE, VELA, MICE, FETS & ISIS Linac  Post doc in this area would be very beneficial April 5, 201340PASI WG6 Summary

41 Collaboration Opportunities (3/3) Beam chopping – FETS and PXIE both need similar power level chopped beam absorbers – could work on common design CW SRF – Daresbury cryomodule now installed at ALICE and ready for beam characterisation – FNAL keen to take part, especially CW LHC-HL upgrade crab cavities – Regulation and directives associated with cryogenic operation associated with mechanical design, pressure relief, volumes, pipe sizes, methods of QC Industrialization – Cavity vendor qualification ongoing Daresbury-FNAL with future 9-cell opportunities – Business managers could talk to each other April 5, 201341PASI WG6 Summary

Download ppt "Working Group 6: Technology for Accelerators Summary / Collaboration Opportunities J.A. Clarke (STFC) C.M. Ginsburg (FNAL) P.A. McIntosh (STFC) Proton."

Similar presentations

Ads by Google