Presentation is loading. Please wait.

Presentation is loading. Please wait.

Infra-red (IR) spectroscopy Aims What is the fingerprint region in an infra- red spectrum? Which functional groups give characteristic absorption peaks?

Similar presentations


Presentation on theme: "Infra-red (IR) spectroscopy Aims What is the fingerprint region in an infra- red spectrum? Which functional groups give characteristic absorption peaks?"— Presentation transcript:

1

2 Infra-red (IR) spectroscopy Aims What is the fingerprint region in an infra- red spectrum? Which functional groups give characteristic absorption peaks? How are the spectra of ketones, aldehydes, carboxylic acids and esters similar and how are they different?

3

4 Infra-red (IR) spectroscopy An infra-red spectrum is essentially a graph of transmission/% (vertical axis) against wavenumber/cm -1, (horizontal axis). A dip (or trough) on the spectrum is called a peak. Infra-red spectroscopy is used to identify functional groups in organic compounds. Most functional groups give rise to characteristic infra-red absorption which do not change much from one compound to another. Absorption of infra-red radiation by a molecule causes bond stretching and bond bending (but not bond breaking!) resulting in the appearance of absorption peaks at particular wavenumbers. Note 1: The x-axis on an infra-red spectrum must be read from right to left! Note 2:There is a change of scale on the x-axis.

5 Fingerprinting The area of an IR spectrum below about 1500cm -1 usually has many peaks. The shape of this region is unique for any particular substance. It can therefore be used to identify an unknown compound by matching with spectra of known samples using a computer database wavenumber (cm -1 ) transmission (%) fingerprint region

6 Impurities An IR spectrum can be used to spot the presence of impurities. The spectrum of a compound is matched against that of the pure compound. Extra peaks indicate the presence of impurities in the compound. Identifying Functional Groups Particular bonds / functional groups produce peaks in particular areas of the spectrum. BondWavenumber/ cm -1 C-H C-C C=C C=O C-O O-H (alcohols) O-H (carboxylic acids)

7 Infra-red spectra of alcohols Wavenumber of peak/ cm -1 Bond causing peak (broad)O-H (narrow)C-O Note 1: The peak caused by the O—H bond (between 3230cm -1 and 3550cm -1 ) appears broad due to the presence of hydrogen bonding between the alcohol molecules. Note 2: The peak caused by the C—O bond (between 1000cm -1 and 1300cm -1 ) is often clearly identifiable, despite appearing in the fingerprint region.

8 Infra-red spectra of compounds containing the C=O group The C=O bond is found in aldehydes, ketones, carboxylic acids, esters, etc. It shows as an absorption peak at about 1700cm -1. The actual value varies slightly, depending on the type of compound it is found in. 1. Aldehydes and Ketones: Wavenumber of peak/cm -1 Bond causing peak 1700C=O

9 2. Carboxylic Acids: Wavenumber of peak/cm -1 Bond causing peak 1700C=O 3000 (broad)O-H Note: The O—H absorption peak is broad (as in alcohols) due to hydrogen bonding

10 3. Esters: Wavenumber of peak/cm -1 Bond causing peak 1700C=O C-O C-O Note: There is no O—H absorption peak but there are often two C—O absorption peaks visible as there are two C—O bonds in slightly different molecular environments within the molecule.

11

12 To do Summary questions on page 138 and 141

13


Download ppt "Infra-red (IR) spectroscopy Aims What is the fingerprint region in an infra- red spectrum? Which functional groups give characteristic absorption peaks?"

Similar presentations


Ads by Google