Download presentation

Presentation is loading. Please wait.

1
**Do Now 4/13/10 Take out homework from yesterday.**

Text p. 632, #3-5, 12 – 32 multiples of 4, #40 Copy HW in your planner. Practice worksheet 10.2 evens

2
**Homework Text p. 632, #3-5, 12 – 32 multiples of 4, #40**

3) C 4) A 5) B 12 – 32) graphs 40) a) domain: -32 ≤ x ≤ 32 b) range: 0 ≤ y ≤

3
Objective SWBAT graph y = ax² + bx + c

4
**Section 10.2 “Graph y = ax² + bx + c”**

Properties of the Graph of a Quadratic Function y = ax² + bx + c is a parabola that: -opens up if a > 0 -opens down if a < 0 -is narrower than y = x² if the |a| > 1 -is wider than y = x² if the |a| < 1 -has an axis of x = -(b/2a) -has a vertex with an x-coordinate of -(b/2a) -has a y-intercept of c. So the point (0,c) is on the parabola

5
**Finding the Axis of Symmetry and the Vertex of a Parabola**

Consider the graph y = -2x² + 12x – 7 (a) Find the axis of symmetry of the graph (b) Find the vertex of the graph Axis of symmetry: Substitute a = -2 b = 12 Substitute the x-value into the original equation and solve for y. The vertex of the parabola is the point (3,11)

6
**Graph y = 3x² - 6x + 2 Step 1: Determine if parabola opens up or down**

Step 2: Find and draw the axis of symmetry Step 3: Find and plot the vertex Step 4: Plot two points. Choose two x-values less than the x-coordinate of the vertex. Then find the corresponding y-values. x y 2 -1 11 Step 5: Reflect the points plotted over the axis of symmetry. Step 6: Draw a parabola through the plotted points. Minimum Value

7
**Graph y = -1/4x² - x + 1 Step 1: Determine if parabola**

opens up or down DOWN Step 2: Find and draw the axis of symmetry Step 3: Find and plot the vertex Step 4: Plot two points. Choose two x-values more than the x-coordinate of the vertex. Then find the corresponding y-values. x y 1 2 -2 Step 5: Reflect the points plotted over the axis of symmetry. Maximum Value Step 6: Draw a parabola through the plotted points.

8
**Minimum and Maximum Values**

For y = ax² + bx + c, the y-coordinate of the vertex is the MINIMUM VALUE of the function if a > 0 or the MAXIMUM VALUE of the function if a < 0. y = ax² + bx + c; a > 0 y = -ax² + bx + c; a < 0 maximum minimum

9
Homework Practice worksheet 10.2 form B evens

Similar presentations

Presentation is loading. Please wait....

OK

Properties of Quadratic Functions in Standard Form.

Properties of Quadratic Functions in Standard Form.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on forward contract examples Ppt on input and output devices of computer Ppt on dry cell and wet cell phone Ppt on conceptual art drawings Ppt on project management consultancy Ppt on op amp circuits design Ppt on accounting concepts and conventions Ppt on pre ignition problem Ppt on biodegradable and non biodegradable example Ppt on any one mathematicians