Download presentation

Presentation is loading. Please wait.

1
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 1.) Acids and Bases are essential to virtually every application of chemistry Analytical procedures such as chromatography and electrophoresis Protein purification, chemical reactions, environmental issues Forest Destruction Pollutants Contribute to Acid Rain Urban Stone Decay Yellowstone Air Pollution (same view)

2
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Completely dissociates [H3O+] or [OH-] equals concentration of strong acid or base What is the pH of a 0.1M solution of HCl? What is the pH of a 0.1M solution of KOH?

3
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases pH at other concentrations of a strong base Relationship between pH and pOH: [OH-] (M) [H+] (M) pH 1x10-1 1x10-13 13.0 1x10-2 1x10-12 12.0 1x10-3 1x10-11 11 1x10-4 1x10-10 10 1x10-5 1x10-9 9 Acid Ka HCl 103.9 HBr 105.8 HI 1010.4 HNO3 101.4

4
**Monoprotic Acid-Base Equilibria**

Wrong Assumption!! Review of Fundamentals 2.) Strong Acids and Bases Dilemma: What is the pH of 1.0x10-8 M KOH? How can a base produce an acidic solution?

5
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Wrong Assumption!! For large concentration of acid or base, [H+] = [acid] or [OH-] = [base] For small concentration, must account for water dissociation In pure water [OH-] = 1.0x10-7M, which is greater than [KOH] = 1x10-8M Must Use Systematic Treatment of Equilibrium

6
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Systematic Treatment of Equilibrium Step 1: Pertinent reactions: Kw Completely dissociates, not pertinent Step 2: Charge Balance: Step 3: Mass Balance: All K+ comes from KOH

7
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Systematic Treatment of Equilibrium Step 4: Equilibrium constant expression (one for each reaction): Step 5: Count equations and unknowns: Three equations: (1) (2) (3) Three unknowns:

8
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Systematic Treatment of Equilibrium Step 6: Solve (Seeking pH [H+]): Set [H+] =x, and substitute mass balance equation into charge balance equation: From mass balance Substitute OH- equation into equilibrium equation:

9
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Systematic Treatment of Equilibrium Step 6: Solve (Seeking pH [H+]): Solve the quadratic equation: Use quadratic equation Negative number is physically meaningless pH slightly basic, consistent with low [KOH]

10
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 2.) Strong Acids and Bases Systematic Treatment of Equilibrium Three Regions depending on acid/base concentrations intermediate concentrations, ( M), H2O ionization ≈ H+,OH- systematic equilibrium calculation necessary High concentrations (≥10-6M), pH considered just from the added H+,OH- low concentrations (≤10-8M), pH=7 not enough H+,OH- added to change pH

11
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 3.) Water Almost Never Produces 10-7 M H+ and OH- pH=7 only true for pure water Any acid or base suppresses water ionization - Follows Le Châtelier’s principal In 10-4 M HBr solution, water dissociation produces only M OH- and H+

12
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 4.) Weak Acids and Bases Weak acid/base do not completely dissociate Dissociation Ka for the acid HA: Base Hydrolysis constant Kb pK is negative logarithm of equilibrium constant - As Ka or Kb increase pKa or pKb decrease - Smaller pKa stronger acid

13
**Monoprotic Acid-Base Equilibria**

Review of Fundamentals 4.) Weak Acids and Bases Conjugate acid-base pair – related by the gain or loss of a proton - Conjugate base of a weak acid is a weak base - Conjugate acid of a weak base is a weak acid - Conjugate base of a strong acid is a very weak base or salt Formic acid (pKa 3.744) stronger acid than benzoic acid (pKa=4.202) Acid-base pair

14
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 1.) General Systematic Treatment of Equilibrium Unlike concentrated strong acid, need to account for water ionization Find pH for a solution of a general weak acid HA Step 1: Pertinent reactions: Ka Kw Step 2: Charge Balance: Step 3: Mass Balance: F – formal concentration of acid Step 4: Equilibrium constant expression (one for each reaction):

15
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 1.) General Systematic Treatment of Equilibrium Find pH for a solution of a general weak acid HA Step 5: Count equations and unknowns: Four Equations: (1) (2) (3) (4) Four Unknowns: Step 6: Solve (Not easy to solve cubic equation results!): - Again, need to make assumptions to simplify equations - The goal is to determine [H+], so we can measure pH

16
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 1.) General Systematic Treatment of Equilibrium Find pH for a solution of a general weak acid HA Step 6: Solve (Not easy to solve cubic equation results!): Make Some Initial Assumptions: For a typical weak acid, [H+] from HA will be much greater than [H+] from H2O If dissociation of HA is much greater than H2O, [H+] >> [OH-] Set [H+]=x: substitute

17
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 1.) General Systematic Treatment of Equilibrium Find pH for a solution of a general weak acid HA Step 6: Solve (Not easy to solve cubic equation results!): Substitute into Equilibrium Equation: Rearrange: Solve quadratic equation:

18
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 1.) General Systematic Treatment of Equilibrium Find pH for a solution of a general weak acid HA Step 7: Verify Assumption: Was the approximation [H+] ≈ [A-] justified ([H+] >>[OH-])? Setting F = M and Ka = 1.07x10-3 for o-hydroxybenzoic acid: [H+] >> [OH-] 6.8x10-3M >> 1.5x10-12M assumption is justified! Determine [OH-] from water dissociation:

19
**Monoprotic Acid-Base Equilibria**

Weak Acid Equilibria 2.) Fraction of Dissociation Fraction of acid HA in the form A-(a): Example: Percent dissociation increases with dilution What is the percent fraction dissociation for F = M and Ka = 1.07x10-3 for o-hydroxybenzoic acid?

20
**Monoprotic Acid-Base Equilibria**

Weak Base Equilibria 1.) Treatment of Weak Base is Very Similar to Weak Acid Assume all OH- comes from base and not dissociation of water Step 1: Pertinent reactions: Kb Kw Step 2: Charge Balance: Step 3: Mass Balance: F – formal concentration of base Step 4: Equilibrium constant expression (one for each reaction):

21
**Monoprotic Acid-Base Equilibria**

Weak Base Equilibria 1.) Treatment of Weak Base is Very Similar to Weak Acid Assume all OH- comes from base and not dissociation of water Step 6: Solve (Assume [BH+] >> [H+] [BH+] ≈ [OH-]): Set [OH-]=x and substitute into Equilibrium Equation: Rearrange: Solve quadratic equation:

22
**Monoprotic Acid-Base Equilibria**

Weak Base Equilibria 2.) Example What is the pH of cocaine dissolved in water? F = M and Kb = 2.6x10-6 for cocaine? Kb=2.6x10-4 x x x

23
**Monoprotic Acid-Base Equilibria**

Weak Base Equilibria 2.) Example What is the pH of cocaine dissolved in water? F = M and Kb = 2.6x10-6 for cocaine? Because x=[OH-], we need to solve for [H+]

24
**Monoprotic Acid-Base Equilibria**

Weak Base Equilibria 4.) Fraction of Association Fraction of Base B in BH+ form (a): Example: What is the percent fraction dissociation of cocaine reacted with water? F = M and Kb = 2.6x10-6 for cocaine?

25
**Monoprotic Acid-Base Equilibria**

Weak Acid Base Equilibria 5.) Example A M solution of benzoic acid has a pH of Calculate pKa for this acid. What is the percent fraction dissociation?

26
**Monoprotic Acid-Base Equilibria**

Buffers 1.) A buffered solution resists changes in pH when acids or bases are added Buffer: is a mixture of a weak acid and its conjugate base Must be comparable amounts of acid & base For an organism to survive, it must control the pH of each subcellular compartments Enzyme-catalyzed reactions are pH dependent Bacteria growing in hot springs (acidic pH) Bacteria growing in lung tissues (neutral pH) Thermophilic archaea Picrophilus oshimae and Picrophilus torridus grow at pH =0.7 (Stomach acid 1-3 pH) Nature (London) (1995), 375(6534),

27
**Monoprotic Acid-Base Equilibria**

Buffers 2.) Mixing a Weak Acid and Its Conjugated Base Very little reaction occurs Very little change in concentrations Example: Consider a 0.10 M of acid with pKa of 4.00 0.10-x x x

28
**Monoprotic Acid-Base Equilibria**

Buffers 2.) Mixing a Weak Acid and Its Conjugated Base Example: Consider adding 0.10 M of conjugate base with pKb of 10.00 0.10-x x x HA dissociates very little and A- reacts very little with water

29
**Monoprotic Acid-Base Equilibria**

Buffers 3.) Henderson-Hasselbalch Equation Rearranged form of Ka equilibrium equation: Take log of both sides: rearrange: pH pKa

30
**Monoprotic Acid-Base Equilibria**

Buffers 3.) Henderson-Hasselbalch Equation Determines pH of buffered solution Need to know ratio of conjugate [acid] and [base] If [A-] = [HA], pH = pKa All equilibria must be satisfied simultaneously in any solution at equilibrium Only one concentration of H+ in a solution Similar equation for weak base and conjugate acid [A-]/[HA] pH 100:1 pKa + 2 10:1 pKa + 1 1:1 pKa 1:10 pKa - 1 1:100 pKa - 2 pKa is for this acid

31
**Monoprotic Acid-Base Equilibria**

Buffers 3.) Henderson-Hasselbalch Equation A strong acid and a weak base react “completely” to give the conjugate acid: Also, a strong base and a weak acid react “completely” to give the conjugate base: Weak base Strong acid conjugate acid Weak acid Strong base conjugate base

32
**Monoprotic Acid-Base Equilibria**

Buffers 3.) Henderson-Hasselbalch Equation Example: Calculate how many milliters of M KOH should be added to 5.00 g of MOBS to give a pH of 7.40? What is the pH if an additional 5 mL of the KOH solution is added? pKa = 7.48 FW =

33
**Monoprotic Acid-Base Equilibria**

Buffers 4.) Why Does a Buffer Resist Changes in pH? Strong acid or base is consumed by B or BH+ Maximum capacity to resist pH change occurs at pH=pKa Buffer Capacity (b): measure of a solutions resistance to pH change 5.) Choosing a Buffer Choose a buffer with pKa as close as possible to desired pH Useful buffer range is pKa ± 1 pH units Buffer pH depends on temperature and ionic strength activity coefficients where Ca and Cb are the number of moles of strong acid and strong base per liter needed to produce a unit change in pH

34
**When preparing a buffer, you need to monitor the pH.**

Can not assume the added HA and A- will yield the desired pH. pH dependent on: - activity - temperature - ionic strength

35
**Wide number of buffers available that cover an essential complete range of pHs.**

Choose a buffer with a pKa as close as possible to the desired pH.

Similar presentations

OK

Chapter 16: Aqueous Ionic Equilibria CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.

Chapter 16: Aqueous Ionic Equilibria CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google