Download presentation

Presentation is loading. Please wait.

Published byMadeline Anderson Modified over 3 years ago

1
Multiply Numbers Written in Scientific Notation 8 th Grade Math September 4, 2013 Ms. DeFreese

2
On-line Lesson and Practice http://learnzillion.com/lessons/1293-multiply- numbers-in-scientific-notation http://learnzillion.com/lessons/1293-multiply- numbers-in-scientific-notation http://www.ixl.com/math/grade-8/multiply- numbers-written-in-scientific-notation http://www.ixl.com/math/grade-8/multiply- numbers-written-in-scientific-notation

3
Assignment: multiply the following and put your answer in Scientific Notation 1. (8 x 10 4 )(3 x 10 2 ) 2. (7 x 10 -2 )(8 x 10 -4 ) 3. (4 x 10 5 )(2 x 10 -5 ) 4. (1.5 x 10 7 )(3 x 10 12 ) 5. (1.2 x 10 -8 )(2 x 10 -3 ) 6. (8 x 10 1 )(8 x 10 5 ) 7. (3.4 x 10 5 )(1 x 10 2 ) 8. (4 x 10 -7 )( 4 x 10 5 ) 9. (6 x 10 5 )(6 x 10 -7 ) 10. (3 x 10 -5 )(2 x 10 12 )

4
More Notes: Scientific Notation is based on powers of the base number 10. The number 123,000,000,000 in scientific notation is written as :

5
The first number 1.23 is called the coefficient. It must be greater than or equal to 1 and less than 10. The second number is called the base. It must always be 10 in scientific notation. The base number 10 is always written in exponent form. In the number 1.23 x 10 11 the number 11 is referred to as the exponent or power of ten.

6
Rules for Multiplication in Scientific Notation 1) Multiply the coefficients 2) Add the exponents (base 10 remains) Example 1: (3 x 10 4 )(2x 10 5 ) = 6 x 10 9

7
What happens if the coefficient is more than 10 when using scientific notation? Example 2: (5 x 10 3 ) (6x 10 3 ) = 30. x 10 6 While the value is correct it is not correctly written in scientific notation, since the coefficient is not between 1 and 10. We then must move the decimal point over to the left until the coefficient is between 1 and 10. For each place we move the decimal over the exponent will be raised 1 power of ten. 30.x10 6 = 3.0 x 10 7 in scientific notation.

8
Example 3: (2.2 x 10 4 )(7.1x 10 5 ) = 15.62 x 10 9 = 1.562 x 10 10 Example 4: (7 x 10 4 )(5 x 10 6 )(3 x 10 2 ) = 105. x 10 12 = 1.05 x 10 14

9
(2 X 10 3 )(4X10 4 )= 8 x 10 7 (6 X 10 5 )(7 X 10 6 )= 42 x 10 11 = 4.2 x 10 12 (5.5 X 10 7 )(4.2 x 10 4 )= 33.1 x 10 11 = 3.31 x 10 12

10
What happens when the exponent(s) are negative? We still add the exponents. Example 5: (3 x 10 -3 ) (3x 10 -3 ) = 9. x 10 -6 Example 6: (2 x 10 -3 ) (3x 10 8 ) = 6. x 10 5

11
(3 X 10 -6 )(2X10 -4 )= 6 x 10 -12 (5 X 10 -5 )(7 X 10 10 )= 35 x 10 5 = 3.5 x 10 6 (5.5 X 10 -7 )(4.2 x 10 4 )= 33.1 x 10 -3 = 3.31 x 10 -2 (5 X 10 7 )(8 x 10 -6 )(4.2 x 10 4 )= 168.2 x 10 5 = 1.682 x 10 7

Similar presentations

OK

8 th Grade Study Guide System of Equations - Pythagorean Theorem - Laws of Exponents Scientific Notation - Solving Equations.

8 th Grade Study Guide System of Equations - Pythagorean Theorem - Laws of Exponents Scientific Notation - Solving Equations.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on data collection methods and instruments Ppt on india and the great depression Ppt on current account deficit in india Ppt on cartesian products Ppt on trans-siberian railway city Convert video to ppt online free Ppt on case study of wal mart Ppt on story of taj mahal Ppt on fashion industry in india Ppt on rabindranath tagore in english