Download presentation

Presentation is loading. Please wait.

1
Single-view geometry Odilon Redon, Cyclops, 1914

2
Our goal: Recovery of 3D structure Recovery of structure from one image is inherently ambiguous x X?

3
Our goal: Recovery of 3D structure Recovery of structure from one image is inherently ambiguous

4
Our goal: Recovery of 3D structure Recovery of structure from one image is inherently ambiguous

5
Ames Room http://en.wikipedia.org/wiki/Ames_room

6
Our goal: Recovery of 3D structure We will need multi-view geometry

7
Recall: Pinhole camera model Principal axis: line from the camera center perpendicular to the image plane Normalized (camera) coordinate system: camera center is at the origin and the principal axis is the z-axis

8
Recall: Pinhole camera model

9
Principal point Principal point (p): point where principal axis intersects the image plane Normalized coordinate system: origin of the image is at the principal point Image coordinate system: origin is in the corner How to go from normalized coordinate system to image coordinate system? pxpx pypy

10
Principal point offset principal point: pxpx pypy

11
Principal point offset calibration matrix principal point:

12
Pixel coordinates m x pixels per meter in horizontal direction, m y pixels per meter in vertical direction Pixel size: pixels/m mpixels

13
Camera rotation and translation In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation coords. of point in camera frame coords. of camera center in world frame coords. of a point in world frame Conversion from world to camera coordinate system (in non-homogeneous coordinates):

14
Camera rotation and translation Note: C is the null space of the camera projection matrix (PC=0)

15
Camera parameters Intrinsic parameters Principal point coordinates Focal length Pixel magnification factors Skew (non-rectangular pixels) Radial distortion

16
Camera parameters Intrinsic parameters Principal point coordinates Focal length Pixel magnification factors Skew (non-rectangular pixels) Radial distortion Extrinsic parameters Rotation and translation relative to world coordinate system

17
Camera calibration Source: D. Hoiem

18
Camera calibration Given n points with known 3D coordinates X i and known image projections x i, estimate the camera parameters XiXi xixi

19
Camera calibration: Linear method Two linearly independent equations

20
Camera calibration: Linear method P has 11 degrees of freedom One 2D/3D correspondence gives us two linearly independent equations Homogeneous least squares: find p minimizing ||Ap|| 2 Solution given by eigenvector of A T A with smallest eigenvalue 6 correspondences needed for a minimal solution

21
Camera calibration: Linear method Note: for coplanar points that satisfy Π T X=0, we will get degenerate solutions (Π,0,0), (0,Π,0), or (0,0,Π)

22
Camera calibration: Linear method Advantages: easy to formulate and solve Disadvantages Doesn’t directly tell you camera parameters Doesn’t model radial distortion Can’t impose constraints, such as known focal length and orthogonality Non-linear methods are preferred Define error as squared distance between projected points and measured points Minimize error using Newton’s method or other non-linear optimization Source: D. Hoiem

Similar presentations

OK

Course 12 Calibration. 1.Introduction In theoretic discussions, we have assumed: ----- Camera is located at the origin of coordinate system of scene.

Course 12 Calibration. 1.Introduction In theoretic discussions, we have assumed: ----- Camera is located at the origin of coordinate system of scene.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google