Presentation is loading. Please wait.

Presentation is loading. Please wait.

Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 1 Aldo Morselli INFN, Sezione di Roma 2 & Università.

Similar presentations


Presentation on theme: "Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 1 Aldo Morselli INFN, Sezione di Roma 2 & Università."— Presentation transcript:

1 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 1 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 16 - August 2004 Search for Dark Matter with GLAST ICHEP'04 32nd International Conference on High Energy Physics August , 2004 Beijing, China

2 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 2 What is the Universe made of ? Bright stars: 0.5% Baryons (total): 4.4% ± 0.4% Matter: 27% ± 4% Cold Dark Matter: 22.6% ± 4% Neutrinos: < 0.15% Dark Energy: 73% ± 6% h= WMAP+SN+HST astro-ph/ astro-ph Dark Energy CDM Baryons Cold Dark Matter

3 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 3 Neutralino WIMPs Assume  present in the galactic halo  is its own antiparticle => can annihilate in galactic halo producing gamma-rays, antiprotons, positrons…. Antimatter not produced in large quantities through standard processes (secondary production through p + p --> p + X) So, any extra contribution from exotic sources (   annihilation) is an interesting signature ie:   --> p + X Produced from (e. g.)   --> q / g / gauge boson / Higgs boson and subsequent decay and/ or hadronisation.

4 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 4 Propagation Equation for Cosmic Rays in the Milky Way convection velocity field that corresponds to galactic wind and it has a cylindrical symmetry, as the geometry of the galaxy. It’s z-component is the only one different from zero and increases linearly with the distance from the galactic plane loss term: fragmentation loss term: radioactive decay diffusion coefficient is function of rigidity diffusion coefficient in the impulse space, quasi-linear MHD: primary spectra injection index implemented in Galprop ( Strong & Moskalenko, available on the Web)

5 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 5 Propagation parameters uncertainties Geometrical and dynamical parameters of the propagation Pbar and Isotopes Production Cross Section ( ~ 20 % ) Gas distribution in the galaxy Secondary to primary CR ratios are the most sensitive quantities to parameters changing; B/C are measured with the highest statistic Good fits of B/C experimental data constrain possible variations of the unknown parameters; + consistency wit the other prim/sec CR ratios Standard statistical test: Heliospheric modulation z (depends on rigidity) (Perko,1997)

6 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 6 Enveloping curves of all the good fits of the experimental B/C data DR: diffusion + reacceleration Dashed line: Best fit

7 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 7 Enveloping curves of all the good fits of the experimental B/C data Dashed line: Best fit DC: diffusion+convection B/C ratio In DC model problem with the ACE data at low energy DC DR

8 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 8 Allowed values for the propagation parameters for DR propagation Allowed values for the propagation parameters for DC propagation halo sizediffusion constantdiff indexAlfven velocity injection indexesV c gradient upper diff index diff constanthalo size prim spec injection index

9 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 9 Upper and lower bounds of positron spectra due to the uncertainties of propagation parameters in the case of DR model 30% under 1GeV 25% around 1GeV around 15% at 10GeV

10 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 10 Upper and lower bounds of antiproton spectra due to the uncertainties of propagation parameters in the case of DR model from 10% - 13% in all the energy range

11 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 11 Prim/Sec consistency check for DR model Dashed: (Sc+Ti+V)/Fe spectra that corresponds to the best fit of B/C; enveloping curves of all fits that are produced with good parameters set

12 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 12 AMS98 Background from normal secondary production Signal from 964 GeV neutralino annihilations (P.Ullio, astro-ph ) Mass91 data from XXVI ICRC, OG , 1999 Caprice94 data from ApJ, 487, 415, 1997 Caprice98 data from ApJ, 561, (2001), 787. astro-ph/ Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino. Particles and photons are sensitive to different neutralinos. Gaugino-like particles are more likely to produce an observable flux of antiprotons whereas Higgsino-like annihilations are more likely to produce an observable gamma-ray signature ∆ BESS data from Phys.Rev.Lett, 2000, 84, 1078 AMS: Phys Rep BESS 00

13 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 13 MASS Matter Antimatter Space Spectrometer ( 89 & 91 )

14 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 14 The CAPRICE 94 flight

15 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 15 MASS 89 flight

16 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 16 MASS 89 flight

17 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 17 MASS 89

18 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 18 The PAMELA Apparatus Magnetic spectrometer TRD Calorimeter ToF Anticoincidenceshield Shower tail catcher scintillator Neutron Detector

19 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 19 PAMELA Status Detectors are ready and compling with the design performances Detectors tested at PS / SPS Test facilities as Prototypes and in FM configuration SPS, July 2000 FM SPS, September 2003 Magnet/Tracker, Calorimeter SPS, July 2002 Integration of PAMELA FM underway at INFN – Roma2

20 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 20 The Satellite: Resurs DK1 -Soyuz-TM Launcher from Baikonur -Launch in Lifetime >3 years -PAMELA mounted inside a Pressurized Container, attached to Satellite -Earth-Observation- Satellite

21 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 21 PAMELA Capabilities PAMELA will explore: Antiproton flux 80 MeV GeV Positron flux50 MeV – 270 GeV Electron flux up to 400 GeV Proton flux up to 700 GeV Electron/positron fluxup to 2 TeV Light nuclei (up to Z=6) up to 200 GeV/n Antinuclei search (sensitivity of in He/He) more on PAMELA:

22 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 22 The PAMELA Launch is on February 2005 from Baikonur

23 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 23 PAMELA expectations for three years for antiproton spectra for DR model antiproton

24 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 24 PAMELA expectations for three years for positron spectra for DC model

25 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 25 PAMELA: Cosmic-Ray Antiparticle Measurements: Antiprotons Secondary production A.M.and V.Z. with Galprop, DC, Phi=550 Mv Primary production from  annihilation (m(  ) ~ 1 TeV) Ullio 99 updated from P. Picozza and A. Morselli, astro-ph/ Secondary production Simon et al. Secondary production A.M.and V.Z. with Galprop, DR, Phi=550 Mv

26 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 26 Signal rate from Supersymmetry governed by supersymmetric parameters governed by halo distribution gamma-ray flux from neutralino annihilation J(  ):

27 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 27 EGRET, E > 1GeV Mayer-Hasselwander et al, 1998

28 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 28 Poin source location for GLAST~ 5 arcmin 1 pixel ~ 5 arcmin 2 0 x 2 0 field IBIS/ISGRI 20–40 keV

29 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, x 2 0 field IBIS/ISGRI 20–40 keV1 pixel ~ 5 arcmin Poin source location for GLAST~ 5 arcmin 2 0 x 2 0 field EGRET, E > 1GeV

30 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 30 EGRET data & Susy models ~2 degrees around the galactic center EGRET data Annihilation channel W + W - M  =80.3 GeV background model(Galprop) WIMP annihilation (DarkSusy) Total Contribution A.Morselli, A. Lionetto, A. Cesarini, F. Fucito, P. Ullio, astro-ph/ N b = N  = Typical N  values: NFW: N  = 10 4 Moore: N  = Isotermal: N  =

31 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 31 GLAST: see Monica Pepe talk

32 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 32 ~2 degrees around the galactic center, 2 years data (Galprop) (one example from DarkSusy) GLAST Expectation & Susy models astro-ph/ A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle Physics, 21, , June 2004 [astro-ph/ ] N b = N  = Typical N  values: NFW: N  = 10 4 Moore: N  = Isotermal: N  = Annihilation channel W + W - M  =80 GeV

33 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 33 region where 0.13 <  CDM h   < 1 GLAST sensitivity (5  ) for a neutralino density N  of 10 4 in a  =10 -5 sr region around the galactic center Minimal Supersymmetric Standard Model with: A 0 = 0,  > 0, m t =174 GeV Typical N  values for  =10 -5 sr : NFW: N  = 10 4 Moore: N  = Isotermal: N  = A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle Physics 21, , June 2004 [astro-ph/ ] Estimated reaches with GLAST region where 0.09 <  CDM h   < 0.13 if GLAST do not see Supersymmetry this region is excluded for a NFW halo m h 0 <114.3 GeV GeV

34 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 34 region where 0.13 <  CDM h   < 1 GLAST sensitivity (5  ) for a neutralino density N  of 10 4 in a  =10 -5 sr region around the galactic center Minimal Supersymmetric Standard Model with: A 0 = 0,  > 0, m t =174 GeV Typical N  values for  =10 -5 sr : NFW: N  = 10 4 Moore: N  = Isotermal: N  = Estimated reaches with GLAST region where 0.09 <  CDM h   < 0.13 if GLAST do not see Supersymmetry this region is excluded for a NFW halo m h 0 <114.3 GeV GeV A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle Physics 21, , June 2004 [astro-ph/ ]

35 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 35 Supersymmetry breaking

36 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 36 Mixed Anomaly mediated -gauge mediated model: Tesi Alessandro Cesarini:

37 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 37 Acc.Bounds Tachyons No EWSB region where 0.1 <  CDM h   < 0.3 GLAST sensitivity for a neutralino density N  of 10 4 in a  =10 -5 sr region around the galactic center AMSB-GMSB model six free parameters Typical N  values: NFW: N  = 10 4 Moore: N  = Isotermal: N  = Mixed Anomaly mediated -gauge mediated model: Test with GLAST PRELIMINARY

38 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 38 Cangaroo Hess Cangaroo consistent with ~ 2 TeV M  Hess > 12 TeV M  Whipple HESS Coll. astro-ph/

39 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 39 Conclusions GLAST will explore a good portion of the supersymmetric parameter space … and this is only an additional item for GLAST !

40 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 40  GLAST will be an important step in gamma ray astronomy ( ~ sources compared to ~ 200 of EGRET)  A partnership between High Energy Physics and  Astrophysics  Beam test and software development well on the way  Wide range of possible answers/discoveries  Gold era for multiwavelenght studies 2 nd Conclusions

41 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 41 Extra slides

42 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 42 MAGIC sensitivity based on the availability of high efficiency PMT’s All sensitivities are at 5  Cerenkov telescopes sensitivities (Veritas, MAGIC, Whipple, Hess, Celeste, Stacee, Hegra) are for 50 hours of observations. Large field of view detectors sensitivities (AGILE, GLAST, Milagro, ARGO, AMS are for 1 year of observation. Sensitivity of  -ray detectors cal

43 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 43 Energy versus time for X and Gamma ray detectors

44 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 44 GLAST Performance

45 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 45 AMS Cal AMS Trk EGRET

46 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 46 Electron-Proton Separation (Calorimeter) SPS Test Beam Data: p & e GeV/c

47 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 47 Differential yield for each annihilation channel WIMP mass=200GeV total yields yields not due to  0 decay

48 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 48 Differential yield for b bar neutralino mass

49 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 49 effective area distribution of observing time with inclination angle for the declination of the Galactic center. This is for a sky survey with +/-35 deg rocking and with the inclusion of the loss of exposure due to SAA (South Atlantic Anomaly) passages. The target direction was considered to be viewable if its zenith angle was no more than 105 deg. The fractions are for one precession period of the orbit (54.9 days). The main numbers are : Fraction of time in SAA: Fraction of non-SAA time that source is not occulted: Net fraction of time that source can be observed: The figure divides this fraction into inclination angle ranges, the sum of all values is 1

50 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 50 ? From rotation curves a =core radius of halo  Isothermal profile  =0 no cusp Navarro-Frenk-White Moore et al… Kravtsov et al.(a) Kravtsov et al.(b) Distribution of Matter in Galaxy

51 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 51 J(  ):


Download ppt "Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 1 Aldo Morselli INFN, Sezione di Roma 2 & Università."

Similar presentations


Ads by Google