Download presentation

Presentation is loading. Please wait.

Published byIsaias Feild Modified over 5 years ago

1
**Copyright © 2013, 2009, 2006 Pearson Education, Inc.**

Section 5.1 Adding and Subtracting Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1

3
Polynomials A polynomial is a single term or the sum of two or more terms containing variables with whole number exponents. Consider the polynomial: This polynomial contains four terms. It is customary to write the terms in order of descending powers of the variable. This is the standard form of a polynomial. Here are two other polynomials which are written in standard form.

4
**Degree of nonzero constant: 0**

Polynomials The Degree of axn If a ≠ 0, the degree of axn is n. The degree of a nonzero constant term is 0. The constant 0 has no defined degree. Degree of nonzero constant: 0 Degree 2 Degree 1 Degree 3

5
**Degree of a Polynomial Degree 3 Polynomial: Degree 4 Polynomial:**

The degree of a polynomial is the degree of its highest order term. Example: Degree 3 Polynomial: Degree 4 Polynomial:

6
**Special Polynomials Monomial: A polynomial with one term.**

Binomial: A polynomial with two terms. Trinomial: A polynomial with three terms. Example: This is a 4th degree trinomial.

7
Objective #1: Example

8
Objective #1: Example

10
**Polynomials Adding Polynomials**

Polynomials are added by removing the parentheses that surround each polynomial (if any) and then combining like terms.

11
**Adding Polynomials Polynomials are added by combining like terms.**

Like terms are terms containing exactly the same variables to the same powers. Example: These like terms both contain x to the second power. Add the coefficients and keep the same variable factor.

12
**Adding Polynomials Add: Remove parentheses**

EXAMPLE Add: SOLUTION Remove parentheses Rearrange terms so that like terms are adjacent Combine like terms

13
Objective #2: Example

14
Objective #2: Example

15
Objective #2: Example

16
Objective #2: Example

18
**Subtracting Polynomials**

To subtract two polynomials, add the first polynomial and the opposite of the polynomial being subtracted.

19
Objective #3: Example

20
Objective #3: Example

21
Objective #3: Example

22
Objective #3: Example

24
**Graphs of Polynomial Functions**

Graphs of equations defined by polynomials of degree 2, such as have a mirror like quality. We can obtain their graphs, shaped like bowls or inverted bowls, using the point-plotting method for graphing an equation in two variables.

25
Objective #4: Example

26
Objective #4: Example

27
Objective #4: Example CONTINUED

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google