Download presentation

Presentation is loading. Please wait.

Published byJada Roland Modified over 3 years ago

1
Mathe III Lecture 1 Mathe III Lecture 1

2
2 WS 2005/6 Avner Shaked Mathe III Math III

3
3 Tutorien für Mathematik III Im WS 05/06 Tutor: ChongDae KIM Mo. 11:00 Uhr - 12.30Uhr HS N. Mo. 12.30 Uhr - 14.00Uhr HS N. Di. 9.30 Uhr - 11.00Uhr HS N. Di.13.30 Uhr - 15.00Uhr HS N.

4
4 http://www.wiwi.uni-bonn.de/shaked / Homepage address with PowerPoint Presentations: http://www.wiwi.uni-bonn.de/shaked /

5
5

6
6

7
7 Bibliography K. Sydsaeter, P.J. Hammond: Mathematicsfor Economic Analysis Excellent, Comprehensive R. Sundaram: A First Course in Optimization Theory A. de la Fuente: Mathematical Methods and Model for Economists A. K. Dixit: Optimization in Economic Theory Mathematical,covers less than Sydsaeter & Hammond, more of dynamic programming New, theoretical, good in dynamics Short, concentrates on Lagrange, Uncertainty & Dynamic Prog. A. C. Chiang: Elements of Dynamic Optimization

8
8 Bibliography K. Sydsaeter, P.J. Hammond: Mathematics for Economic Analysis R. Sundaram: A First Course in Optimization Theory A. de la Fuente: Mathematical Methods and Model for Economists A. K. Dixit: Optimization in Economic Theory A. C. Chiang: Elements of Dynamic Optimization

9
9 Difference Equations (Sydsaeter.& Hammond, Chapter 20, Old Edition) Differential Equations (Sydsaeter.& Hammond, Chapter 21 Old Edition) Constrained Optimization (Sydsaeter.& Hammond, Chapter 18) Uncertainty (Dixit, Chapter 9) The Maximum Principle, Dynamic Programming (Dixit, Chapters 10,11) Calculus of Variations (Chiang, Part 2)

10
10 Difference Equations The state today is a function of the state yesterday The state at time t is a function of the state at t-1 Or: The state at time t is a function of the states of the previous k periods: t-1, t-2, t-3…,t-k, and possibly of the date t

11
11 The solution to the equation: is an infinite vector satisfying the above equation for

12
12 Example: Interest rate saving For a given x 0 :

13
13 Example (cntd.):

14
14 ? ? t……?

15
15

16
16 Mathematical Induction

17
17 Mathematical Induction Etc. Etc. Etc. Modus Ponens (Abtrennregel)

18
18

19
19 ?

20
20

21
21 €1 for 1 period €1 for 2 periods €1 for t-1 periods € x 0 for t periods The solution to the difference equation: is: Example (cntd.):

22
22 First Order Difference Equations etc. etc. etc.

23
23 The difference equation x t =f(t, x t-1 ) has a unique solution with a given value x 0. Theorem: i.e. For each value x 0 there exists a unique vector, x 1, x 2, x 3, ……. satisfying the difference equation. Existence & Uniqueness

24
24 First Order Difference Equations Linear Equations with Constant Coefficients

25
25

26
26

27
27 Example: A Model of Growth

28
28 Proportional Growth Rate

29
29 Equilibrium & Stability ??? An Equilibrium A Stationary State

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

Similar presentations

Presentation is loading. Please wait....

OK

2 |SharePoint Saturday New York City

2 |SharePoint Saturday New York City

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on linear programming in operations research Ppt on time management for students Ppt on sources of energy class 10 Ppt on model view controller diagram Ppt on group development process Projector view ppt on iphone Ppt on op amp 741 Ppt on next generation 2-stroke engines Ppt on recycling of wastes Ppt on zener diode theory