Presentation is loading. Please wait.

Presentation is loading. Please wait.

Michael Reibel Boesen 1, Didier Keymeulen 2, Jan Madsen 1, Thomas Lu 2, Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory.

Similar presentations


Presentation on theme: "Michael Reibel Boesen 1, Didier Keymeulen 2, Jan Madsen 1, Thomas Lu 2, Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory."— Presentation transcript:

1 Michael Reibel Boesen 1, Didier Keymeulen 2, Jan Madsen 1, Thomas Lu 2, Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory November 3rd, 2010 Integration of the Self-Healing eDNA Architecture in an Embedded System and Evaluation of it Using a Fourier Transform Spectrometer Instrument Application 1

2 Big picture 2 eDNA: Self-healing hardware arch. DTU Informatics Michael, Jan Madsen, Pascal Schleuniger Fast design and impl. using CompactRIO for space instruments Greg Flesch (JPL) Didier Keymeulen (JPL) Tunable Laser Spectrometer (MSL) Ramp FFT AVG Analog output Analog output PowerPC, 800MHz, VxWorks Analo g input Analo g input ADC DAC FPGA Virtex5 40MHz clock DAQ CompactRIO Liquid Crystal Waveguide-based Fourier Transform Spectrometer Tien-Hsin Chao (JPL) Thomas Lu (JPL) Scott Davis (Vescent Photonics) George Farca (Vescent Photonics)

3 Motivation: Why Self-healing in Fourier Transform Spectrometer Harsh environment increases probability of permanent & transient faults –Fault in control: Cause damage of instrument –Fault in data processing: Loss of vital science data Repairs impossible, high risk or very expensive Need for autonomous hardware self- healing 3

4 Agenda eDNA: Self-healing hardware architecture Case study application: Fourier Transform Spectrometer Hardware/software implementation & CompactRIO Self-healing of FTS: Control & data processing Performance evaluation 4

5 NA eDNA architecture overview A A B B μP RAM Load S0,00 Jump Z, SP Load S0,01 Ribosomal DNA Pkg in Pkg out Communication layer Control Layer Computational granule Computation layer eCell eDNA prog. eDNA prog.

6 eDNA Compiler 6 while (b != 0) do if (b Completely distributed architecture IDADDR 01(1,1) 02(2,1) 03(1,2) 04(2,2) Comm. type Comm. target Map

7 eDNA Self-reconfiguration 7 NA (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (3,1) (2,3) (3,3) P P P P P P P P P P P P P P P P Pkg in Pkg out P P IDADDR 01(1,1) 02(2,1) 03(1,2) 04(2,2) Genome 1 Genome 2 Genome 3 Genome 4 1.Addr relate to ID 2.ID relate to Genome 3.No genome => spare

8 eDNA Self-healing 1.Fault-detection: TMR-based algorithm: Cell C and spare detects fault at Cell F 2.Spare localization: Cell C locates closest spare-cell K 3.Self-reconfiguration: Broadcast table update –Effects: Function & Communication restoration and Isolation of faulty cell 1.Functionality restoration: “Moved” to (3,1): 2.Communication restoration: Now going to (3,1) instead of (1,1) 3.Isolation: No one communicates with (1,1) 8 (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (3,1) (2,3) (3,3) P P P P P P P P P P P P P P P P P P IDADDR 01(1,1) 02(2,1) 03(1,2) 04(2,2) IDADDR 01(3,1) 02(2,1) 03(1,2) 04(2,2) Pre-fault Self-healed Genome 1 Genome 2 Genome 3 Genome 4 (3,1)

9 Gene RAM 32 ALUo p 32 A A B B ALUALU Z IF/WHIL E <= != EXP R + - * Shift etc. Pico- Blaze eDNA RAM eDNA RAM NA+ SAF NA+ SAF To other eCells Ribosome DNA RAM Self-healing hardware eDNA: Prototype Hardware Architecture state machine Network Adapter + Store and forward registers sw NxM-bit data 8-bit address 8-bit identifier N M

10 Case study: Liquid Crystal Waveguide-based Fourier Transform Spectrometer 10 FFT Data Acquisition Change OPD by changing voltage on electrodes Averaging Prototype: SLD: nm, Resolution: 3-4nm Ramp Ga s No moving parts

11 Fourier Transform Spectrometer HW/SW Integration on CompactRIO Platform HW: Real-time embedded controller architecture (CompactRIO) consisting of –PowerPC at 800MHz running VxWorks –Xilinx V5-LX110 FPGA –Analog input module –Analog output module High-level SW tool support: LabVIEW –FPGA synthesis: Graphical programming language –Integration of VHDL code –Integration of I/O Very fast path-to-flight Design, test & prototype with hardware-in-the-loop (TRL 0-5) Straight to deploy/flight: Using Honeywell hardware (TRL 6-9) 11

12 FTS HW/SW integration Mapping of components 12 eDNA

13 Self-healing hardware for FTS Integration of eDNA onto CompactRIO (1) 13 eDNA VHDL code - Virtex 5 LabVIEW FPGA - Component Level IP Node LabVIEW CLIP LabVIEW CLIP XML VHDL Descr. XML VHDL Descr. Top Level VHDL File Top Level VHDL File Integration in LabVIEW as regular I/O Developer level

14 Self-healing hardware for FTS FTS data processing and control on eDNA SW Toolkit: Simulation, optimization and compilation env. 14 Write eDNA Download Translate Sim FFT AVG Ramp

15 Self-healing hardware for FTS eDNA performance evaluation Focus –eDNA Execution time vs. LabVIEW FPGA impl. –Self-healing time –Execution time before and after healing Note: No TMR fault detection yet 15

16 Self-healing hardware for FTS eDNA performance evaluation eDNA signals that an error occurred  Data removed from dataset  Advanced TMR-based protocol in-the-works Fairness of comparison? –eDNA: FPGA type platform on top of FPGA –FPGA-based prototype: What we have right now 16 MeasurementLabVIEWeDNA Execution time AVG2.42 us219 us Self healing timeN/A110 us Worst case recovery timeN/A1 sample lost Area typeFactor # Slices6x # Flip-Flops4x # LUTs6x

17 Self-healing hardware for FTS eDNA performance evaluation 17 (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (2,3) (3,3) (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (3,1) (2,3) (3,3) Autono mous (3,1)

18 Self-healing hardware for FTS eDNA performance evaluation Depends on cell placement 18 (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (2,3) (3,3) (1,3) (1,2) (1,1) (2,2) (2,1) (3,2) (3,1) (2,3) (3,3) Autono mous (3,1)

19 Ramp results 19 MeasurementLabVIEWeDNA Execution time ramp1 us242 us Self healing timeN/A110 us Worst case recovery timeN/A1 sample lost Area typeFactor # Slices6x # Flip-Flops4x # LUTs6x

20 DCT/FFT results FFT implemented using FFT.VI in LabVIEW eDNA DCT 20 MeasurementLabVIEWeDNA Execution time FFT/DCT5.5ms627.83ms to 42min Self healing timeN/A123 us Worst case recovery timeN/A1 sample lost

21 Conclusion (1) eDNA self-healing architecture demonstrated in real world application Fast integration of eDNA architecture into embedded real-time system Data processing and control functionality of FTS compiled into eDNA code 21

22 Conclusion (2) Autonomous self-healing functionality comes at a high-cost Future improvements to eDNA –Reduce immense communication overhead between cells in eDNA architecture –Replace 8-bit Xilinx PicoBlaze with ASIP –HW implementation of fault-detection mechanism Self-healing time: A fraction of execution time 22

23 Michael Reibel Boesen 23

24 References eDNA architecture: –Michael R. Boesen, Jan Madsen - eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing, NASA/ESA Adaptive Hardware Systems (AHS’09) 2009, San Francisco. –Michael R. Boesen, Pascal Schleuniger, Jan Madsen - Feasibility Study of a Self-healing Hardware Platform, Applied Reconfigurable Computing Conference (ARC’10), Bangkok. LCW-FTS: –Chao, T., Lu, T., Davis, S. R., Rommel, S. D., Farca, G., Luey, B., Martin, A. and Anderson, Michael: Compact Liquid Crystal Waveguide Based Fourier Transform Spectrometer for In-Situ and Remote Gas and Chemical Sensing, Society of Photographic Instrumentation Engineers (SPIE) –Chao, T: Electro-Optic Imaging Fourier Transform Spectrometer, IEEE Aerospace Conference Tunable Laser Spectrometer for MSL –Flesch, G. and Keymeulen, D.: Adaptive Control of Tunable Laser Spectrometers for Space Flight Applications, IEEE Aerospace 2010, Big Sky. –Flesch, G. and Keymeulen, D.: Adaptive Embedded System applied to Tunable Laser Spectrometers for Space Flight Applications, NASA/ESA Adaptive Hardware Systems (AHS’10), Anaheim. 24

25 Backup slides 25

26 Fault detection slide 26 Primary genes eCell type IF (B do 2 nd gene 2.1 st start => 1.Check that result from package == 2 nd gene result 2.If not, send test package to nearest spare cell 3.Spare cell is now tester and voter in TMR system 4.Inconsistency = fault! EXPR(a=a-b) Data 2 nd start Start

27 27

28 Path-to-flight 28 Design, prototype & test TRL : Deploy on Honeywell RDE TRL : Design, Prototype & Test with hardware in the loop [HIL] Design, Prototype & Test with hardware in the loop [HIL] Deploy/flight

29 Z = A expr B EXPR. start finishZ A B Bool S1 start S2 finish Bool S S start finish if BOOL then S1 else S2 end if if BOOL then S1 else S2 end if while BOOL do S end while while BOOL do S end while Parallel S1 end Parallel Parallel S2 end Parallel Parallel S1 end Parallel Parallel S2 end Parallel S1 start finish Self-healing hardware eDNA: Design Methodology (1/2) Compilation Technique while (b != 0) do if (b

30 Analog output Analog output FTS HW/SW integration Mapping of components 30 PowerPC, 800MHz, VxWorks Analog input Analog input FFT AVG ADC DAC FPGA Virtex5 40MHz clock DAQ Ramp

31 Z = A expr B EXPR. start finishZ A B Bool S1 start S2 finish Bool S S start finish if BOOL then S1 else S2 end if if BOOL then S1 else S2 end if while BOOL do S end while while BOOL do S end while Parallel S1 end Parallel Parallel S2 end Parallel Parallel S1 end Parallel Parallel S2 end Parallel S1 start finish Self-healing hardware eDNA: Design Methodology (1/2) Compilation Technique while (b != 0) do if (b

32 Self-healing hardware eDNA: ASIC implementation Aimed at ASIC implementation featuring –Distributed TMR-based Fault Detection protocol –Dedicated eCell processor design Why ASIC not FPGA? –Cell CPU - PicoBlaze main bottleneck[ARC’10] Need dedicated design for speed –Higher logical granulation needed –Communication penalty 32

33 Case-study application: Fourier Transform Spectrometer Purpose: Spectral detection of gases Michelson Interferometer Design 33 FFT Gas

34 Application of Self-healing hardware: eDNA LCW-FTS – Liquid Crystal Waveguide Fourier Transform Spectrometer No moving parts 34 Gas


Download ppt "Michael Reibel Boesen 1, Didier Keymeulen 2, Jan Madsen 1, Thomas Lu 2, Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory."

Similar presentations


Ads by Google