Presentation is loading. Please wait.

Presentation is loading. Please wait.

[ 1 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 Banana Algebra: Jacob Andersen [ ] Aarhus University Claus Brabrand.

Similar presentations


Presentation on theme: "[ 1 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 Banana Algebra: Jacob Andersen [ ] Aarhus University Claus Brabrand."— Presentation transcript:

1 [ 1 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 Banana Algebra: Jacob Andersen [ ] Aarhus University Claus Brabrand [ ] IT University of Copenhagen Syntactic Language Extension via an Algebra of Languages and Transformations

2 [ 2 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Abstract We propose an algebra of languages and transformations as a means for extending languages syntactically. The algebra provides a layer of high-level abstractions built on top of languages (captured by CFGs) and transformations (captured by constructive catamorphisms). The algebra is self-contained in that any term of the algebra specifying a transformation can be reduced to a constant catamorphism, before the transformation is run. Thus, the algebra comes "for free" without sacrificing the strong safety and efficiency properties of constructive catamorphisms. The entire algebra as presented in the paper is implemented as the Banana Algebra Tool which may be used to syntactically extend languages in an incremental and modular fashion via algebraic composition of previously defined languages and transformations. We demonstrate and evaluate the tool via several kinds of extensions.

3 [ 3 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark The Banana Algebra Café The "Banana Algebra Café": Located in Costa Rica City of Cahuita (pop. 3,000): Cahuita ! Banana Breakfast! Banana Breakfast!

4 [ 4 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Introduction: "What is a Banana?" Bananas for Language Transformation Language Extension Pattern Banana Algebra Examples Implementation Related Work Conclusion Outline

5 [ 5 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark What is a 'Banana' ? Datatype; "list": Banana ("sum-of-list"): Implicit recursion on input structure Separation of recursion and evaluation bottom-up re-combination of intermediate results list = Num int | Cons int * list [Num n] = n [Cons n l] = n + [l] list  int (aka. "Catamorphism" ) (| n.n, (n, l ).n+ l |) Another Ex.: "length-of-list"

6 [ 6 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Language Transformation Bananas (statically typed): Source language: ' L S ' Target language: ' L T ' Nonterminal-typing: '  ' Reconstructors: ' c ' list = Num int | Cons int * list tree = Nil | Leaf int | Node tree * tree [Num n] = Leaf n [Cons n l] = Node (Leaf n) [l] [list -> tree] (| L S -> L T [  ] c |) Type-check'able! L S -> L T 

7 [ 7 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Banana properties: Simple (corresponds to: “simple recursion”) Safe (syntactically safe + always terminate) Efficient (linear time in size of input + output) (Expressive) (…enough for interesting extensions) Banana Algebra “for free” (16 banana ops): Modular Incremental Simple Safe Efficient (Expressive) Statically reduce: Banana Algebra (term)  Banana (const)  Banana Properties "The metafront System: Safe and Extensible Parsing and Transformation" [ Claus Brabrand | Michael Schwartzbach ] ( LDTA 2003, SCP J ) "Growing Languages with Metamorphic Syntax Macros" [ Claus Brabrand | Michael Schwartzbach ] ( PEPM 2002 ) Been around for many years We now propose

8 [ 8 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Introduction: "What is a Banana?" Bananas for Language Transformation Language Extension Pattern Banana Algebra Examples Implementation Related Work Conclusion Outline

9 [ 9 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Language Extension Pattern [var V] = var V [lam V E] = lam V [E ] [app E 1 E 2 ] = app [E 1 ] [E 2 ] [zero] = lam z (var z) [succ E] = lam s [E ] [pred E] = app [E ] (lam z (var z)) Numeral extension:Lambda-Calculus: Nonterminal typing: Reconstructors: [Exp -> Exp] Exp : var Id : lam Id * Exp : app Exp * Exp : zero : succ Exp : pred Exp Exp : var Id : lam Id * Exp : app Exp * Exp 'LT''LT' 'LS''LS' ' '' ' 'c ''c ' (| L S -> L T [  ] c |) Catamorphism: Using very simple numeral encoding

10 [ 10 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Algebraic Solution Exp : var Id : lam Id * Exp : app Exp * Exp Exp : zero : succ Exp : pred Exp (| ln -> l [Exp -> Exp] [zero] = lam z (var z) [succ E] = lam s [E ] [pred E] = app [E ]... |) idx + lnl ln  l ln+l  l l  ll  l

11 [ 11 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Extending Java Java grammar: ( 575 lines !!! )... Stm : "repeat" Stm "until" "(" Exp ")" ";" (| repeat -> java [Stm -> Stm, Exp -> Exp] [repeat S E] = do-while [S] (not [E]) |) idx + repeatjava repeat  java java+repeat  java java  java

12 [ 12 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Banana Algebra Languages (L): l v L \ LL \ L L + LL + L src ( X ) tgt ( X ) let v = L in L letx w = X in L Transformations (X): x w X \ LX \ L X + XX + X X XX X idx ( L ) let v = L in X letx w = X in X (| L -> L [  ] c |) {  CFG  }

13 [ 13 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Algebraic Laws Idempotency of '+': Commutativity of '+': Associativity of '+': Source-identity: … L  L + L L 1 + L 2  L 2 + L 1 L 1 + (L 2 + L 3 )  (L 1 + L 2 ) + L 3 L  src(idx(L)) L  tgt(idx(L)) Target-identity:

14 [ 14 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Introduction: "What is a Banana?" Bananas for Language Transformation Language Extension Pattern Banana Algebra Examples Implementation Related Work Conclusion Outline

15 [ 15 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Example Revisited { Id = [a-z] [a-z0-9]* ; Exp.var : Id ; Exp.lam : "\\" Id "." Exp ; Exp.app : "(" Exp Exp ")" ; } { Exp.zero : "zero" ; Exp.succ : "succ" "(" Exp ")" ; Exp.pred : "pred" "(" Exp ")" ; } --- "l.l" "ln.l" --- let l = "l.l" in let ln = "ln.l" in idx(l) + (| ln -> l [Exp -> Exp] Exp.zero = '\z.z' ; Exp.succ = '\s.$1' ; Exp.pred = '($1 \z.z)' ; |) --- "ln2l.x" ---

16 [ 16 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Numerals + Booleans l lb  l idx + lb+l  l l  ll  l lb l ln  l idx + ln+l  l ln + l+ln+lb  l …with Nums …with Bools …with Nums & Bools?

17 [ 17 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Java + Repeat let java = "java.l" in let repeat = "repeat.l" in idx(java) + (| repeat -> java [Exp -> Exp, Stm -> Stm] Stm.repeat = 'do $1 while (!($2));' ; |) { Stm.repeat : "repeat" Stm "until" "(" Exp ")" ";" ; } 7 lines ! { Java... "try" Stm "catch"... Name.id : Id ; } 575 lines --- "java.l" "repeat.l" "repeat2java.x" ---

18 [ 18 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Concrete vs. Abstract Syntax Exp.or : Exp1 "||" Exp ;.exp1 : Exp1 ; Exp1.and : Exp2 "&&" Exp1 ;.exp2 : Exp2 ; Exp2.add : Exp3 "+" Exp2 ;.exp3 : Exp3 ;  Exp7.neg : "!" Exp8 ;.exp8 : Exp8 ; Exp8.par : "(" Exp ")" ;.var : Id ;.num : IntConst ; Exp (with explicit assoc./prec.) : Stm.repeat = Stm.do(, Exp.exp1( Exp1.exp2( Exp2.exp3( Exp3.exp4( Exp4.exp5( Exp5.exp6( Exp6.exp7( Exp7.neg( Exp8.par( ) ))))))))) ; Abstract syntax: Stm.repeat = 'do $1 while (!($2));' ; Concrete syntax: NB: Tool supports BOTH ! (unambiguous: concrete  abstract)

19 [ 19 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark "FUN" Example Lambda Calculus Nums→  Unsigned arithmetic + booleans + definitions + pairs Bools→  Defs→  Pairs→  +++ Fun Literals Literals→Nums Fun grammar transform The "FUN" Language: used for Teaching Functional Programming Basically The Lambda Calculus with…: numerals, booleans, arithmetic, boolean logic, local definitions, pairs, literals, lists, signs, comparisons, dynamic types, fixed-point combinators, … (at Aarhus University)

20 [ 20 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Literals Literals→Nums "FUN" Example Lambda Calculus Nums→  Unsigned arithmetic + booleans + definitions + pairs Bools→  Defs→  Pairs→  +++ Fun Fun grammar transform Signed arith→Nums Literals→Nums Fun grammar transformFunSigned GT + FunFunSigned + Component re-use

21 [ 21 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark "FUN" Example Lambda Calculus Nums→  Unsigned arithmetic + booleans + definitions + pairs Bools→  Defs→  Pairs→  +++ Fun GTFunSigned GT + FunFunSigned + FunCompareFunTypesafe ++ FunCompare GT + FunTypesafe GT + 245x Banana Algebra ops  4 MB Banana !

22 [ 22 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark "FUN" Usage Statistics Usage statistics (245x operators) in "FUN": 58x { …cfg… } Constant languages 51x "file.l" Language inclusions 28x L + L Language additions 23x v Language variables 17x (|L  L [  ] c|) Constant transformations 17x X + X Transformation additions 14x "file.x" Transformation inclusions 10x let-in Local definitions 9x idx(L) Identity transformations 8x X X Compositions 4x L \ L Language restriction 4x w Transformation variables 2x src(X) Source extractions

23 [ 23 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Incremental Development let l = "l.l" in idx(l) + (| "ln.l" -> l [Exp -> Exp] Exp.zero : '\z.z' ; Exp.succ : '\x.$1' ; Exp.pred : '($1 \z.z)' ; |) let l = "l.l" in idx(l) + (| "li.l" -> l [Exp -> Exp] Exp.id : '\z.z' ; |) { Exp.zero : "zero" ; Exp.succ : "succ" Exp ; Exp.pred : "pred" Exp ; } { Id = [a-z] [a-z0-9]* ; Exp.var : Id ; Exp.lam : "\\" Id "." Exp ; Exp.app : "(" Exp Exp ")" ; } --- "ln.l" "ln2li.x" "l.l" "ln2l.x" --- let l = "l.l" in idx(l) + (| ln -> l+"li.l" [Exp -> Exp] Exp.zero : 'id' ; Exp.succ : '\x.$1' ; Exp.pred : '($1 id)' ; |) { Exp.id : "id" ; } --- "li.l" "li2l.x" --- "li2l.x" o "ln2li.x" --- "ln2l.x" --- EXERCISE

24 [ 24 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Example cont'd Both statically reduce to same catamorphism: (| Exp.app : Exp.app($1, $2) ; Exp.lam : Exp.lam($1, $2) ; Exp.pred : Exp.app($1, Exp.lam(Id("z"), Exp.var(Id("z")))) ; Exp.succ : Exp.lam(Id("x"), $1) ; Exp.var : Exp.var($1) ; Exp.zero : Exp.lam(Id("z"), Exp.var(Id("z"))) ; |) { Id = [a-z] [0-9a-z]* ; Exp.app : "(" Exp Exp ")" ; Exp.lam : "\" Id "." Exp ; Exp.var : Id ; } { Id = [a-z] [0-9a-z]* ; Exp.app : "(" Exp Exp ")" ; Exp.lam : "\" Id "." Exp ; Exp.pred : "pred" Exp ; Exp.succ : "succ" Exp ; Exp.var : Id ; Exp.zero : "zero" ; } -> [Exp -> Exp, Id->Id]

25 [ 25 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Other Examples Self-Application (The tool on itself!): SQL embedding (in ): My-Java (endless variations): [L 1 << L 2 ] = '(L 1 \ L 2 ) + L 2 ' [X 1 << X 2 ] = '(X 1 \ src(X 2 )) + X 2 ' Stm.select = 'factor ( ) { if ( ) return ( # \+ ( ) ); }' java ( + sql) ( \ loops) o syntaxe_francais

26 [ 26 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Implementation [ / ] The 'Banana Algebra' Tool: (3,600 lines of O'Caml) Uses (underlying technologies): 'dk.brics.grammar': for parsing, unparsing, and ambiguity analysis ! 'XSugar': for transformation: "concrete syntax  abstract XML syntax" 'XSLT': for transformation: "XML  XML"

27 [ 27 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Introduction: "What is a Banana?" Bananas for Language Transformation Language Extension Pattern Banana Algebra Examples Implementation Related Work Conclusion Outline

28 [ 28 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Related Work (I/III) Macro Systems: "The metafront System: Safe and Extensible Parsing and Transformation" [ Claus Brabrand | Michael Schwartzbach ] ( LDTA 2003, SCP J ) "Growing Languages with Metamorphic Syntax Macros" [ Claus Brabrand | Michael Schwartzbach ] ( PEPM 2002 )

29 [ 29 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Related Work (II/III) Attribute Grammars: Language transformation (and extension)… …via computation on AST's (using "inherited" or "synthesized" or … attributes) E.g., Eli, JastAdd, Silver, … Rewrite Systems: Language transformation (and extension)… …via syntactic rewriting, using encodings…: gradually rewrite " S -syntax" to " T -syntax" E.g., Elan, TXL, ASF+SDF, Stratego/XT, … S  TS  T S  TS  T Both; compared to bananas: More ambitious (expressivity) No termination guarantees (safety) Transformation "indirect" (simplicity)

30 [ 30 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Related Work (III/III) Functional Programming: Catas mimicked by "disciplined style" of fun. programming …aided by: Traversal functions (auto-synthesized from datatypes) Combinator libraries "Shortcut fusion" (to eliminate ' ' at compile-time) Category Theory: A lot of this work can be viewed as Category Theory: Basically ye olde issue: GPL vs. DSL

31 [ 31 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Conclusion IF bananas are sufficiently: (Expressive) THEN you get…: Banana Algebra “for free” (16 banana ops): Incremental Modular Simple Safe Efficient "Niche" Statically reduce: Banana Algebra (term)  Banana (term) 

32 [ 32 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 BONUS SLIDES - Reduction Semantics - " Syntactic Language Extension via an Algebra of Languages and Transformations " [ Jacob Andersen | Claus Brabrand ] ( ITU Technical Report, Dec ) If you want all the details:

33 [ 33 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Reduction Semantics Environments: Reduction relations: Abbreviations:...as a short-hand for: ENV L = VAR L  EXP L ENV L  ENV X  EXP L  EXP L  '  L ' ENV X = VAR X  EXP X ENV L  ENV X  EXP X  EXP X  '  X ' ,  | - L  L l ( , ,L,l)  '  L ' ( , ,X,x)  '  X ' ,  | - X  X x environment of languages environment of transformations

34 [ 34 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Semantics (L) ,  l  L l [ CON L ] ,  v  L  (v) [ VAR L ] ,  L \ L'  L l l' [ RES L ] ,  L'  L l' ,  L  L l ,  L + L'  L l l' [ ADD L ] ,  L'  L l' ,  L  L l l l l ~ l' l l wfl

35 [ 35 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Semantics (L) ,  src (X)  L l S [ SRC L ] ,  X  X (| l S -> l T [  ] c |) ,  tgt (X)  L l T [ TGT L ] ,  X  X (| l S -> l T [  ] c |) ,  let v=L in L'  L l' [ LET L ]  [v=l],  L'  L l' ,  L  L l

36 [ 36 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Semantics (X) ,  X \ L  X x l [ RES X ] ,  L  L l ,  X  X x ,  X + X'  X x x' [ ADD X ] ,  X'  X x' ,  X  X x x x x ~ x' x ,  (| L S -> L T [  ] c |)  X (| l S -> l T [  ] c |) [ CON X ] ,  L S  L l S ,  L T  L l T (| l S -> l T [  ] c |) wfx ,  w  X  (w) [ VAR X ]

37 [ 37 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Semantics (X) ,  X' X  X (| l S -> l T ' [  '  ] c' c |) [ COMP X ] ,  X'  X (| l S ' -> l T ' [  '] c' |) ,  idx (L)  X (| l -> l [id  (l)] id c (l) |) [ IDX X ] ,  letx w=X in X'  X x' [ LET L ] ,  [w=x] X'  X x' ,  X  X x ,  X  X (| l S -> l T [  ] c |) ,  L  L l l T l S ' l

38 [ 38 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 BONUS SLIDES - More Examples -

39 [ 39 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Numeral & Boolean Extension Numeral Extension (catamorphism): Boolean Extension (catamorphism): [var V] = var [V ] [lam V E] = lam [V ] [E ] [app E 1 E 2 ] = app [E 1 ] [E 2 ] [zero] = lam z (var z) [succ E] = lam s [E ] [pred E] = app [E ] (lam z (var z)) [var V] = var [V ] [lam V E] = lam [V ] [E ] [app E 1 E 2 ] = app [E 1 ] [E 2 ] [true] = lam a (lam b (var a)) [false] = lam a (lam b (var b)) [if E 1 E 2 E 3 ] = app (app [E 1 ] [E 2 ]) [E 3 ] Exp : var Id : lam Id * Exp : app Exp * Exp : zero : succ Exp : pred Exp Exp : var Id : lam Id * Exp : app Exp * Exp Exp : var Id : lam Id * Exp : app Exp * Exp : true : false : if Exp Exp Exp Exp : var Id : lam Id * Exp : app Exp * Exp

40 [ 40 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Lambda with Booleans Exp : true : false : if Exp Exp Exp (| lb -> l [Exp -> Exp] [true] = '\a.\b. a' [false] = '\a.\b. b' [if E 1 E 2 E 3 ] = '(([E 1 ] [E 2 ]) [E 3 ])' |) idx + lbl lb  l lb+l  l l  ll  l Exp : var Id : lam Id * Exp : app Exp * Exp

41 [ 41 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Incremental Development let l = "l.l" in idx(l) + (| "ln.l" -> l [Exp -> Exp] Exp.zero : '\z.z' ; Exp.succ : '\x.$1' ; Exp.pred : '($1 \z.z)' ; |) let l = "l.l" in idx(l) + (| "li.l" -> l [Exp -> Exp] Exp.id : '\z.z' ; |) { Exp.zero : "zero" ; Exp.succ : "succ" Exp ; Exp.pred : "pred" Exp ; } { Id = [a-z] [a-z0-9]* ; Exp.var : Id ; Exp.lam : "\\" Id "." Exp ; Exp.app : "(" Exp Exp ")" ; } --- "ln.l" "ln2li.x" "l.l" "ln2l.x" --- let l = "l.l" in idx(l) + (| ln -> l+"li.l" [Exp -> Exp] Exp.zero : 'id' ; Exp.succ : '\x.$1' ; Exp.pred : '($1 id)' ; |) { Exp.id : "id" ; } --- "li.l" "li2l.x" --- "li2l.x" o "ln2li.x" --- "ln2l.x" ---

42 [ 42 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Java + Repeat Java : Exp : Exp "+" Exp... Stm : Exp ";" : "if" "(" Exp ")" Stm : "while" "(" Exp ")" Stm... Stm : "repeat" Stm "until" "(" Exp ")" ";" (| repeat -> java [Exp -> Exp, Stm -> Stm] [repeat S until (E);] = … ; |) idx + repeat java repeat  java java+repeat  java java  java 575 lines Entire extension: 7 lines !

43 [ 43 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Usage Scenarios Programmers: May extend existing languages (~ syntax macros) Developers: May embed DSLs into host languages (SQL in Java) Developers (and teachers): May incrementally specify multi-layered languages Compiler writers: May rely on tool and implement only a small core (and then specify the rest externally as extensions)

44 [ 44 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 BONUS SLIDES - Parsing & Error Reporting -

45 [ 45 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Parsing Parsing (XSugar): Variant of Earley's algorithm: O ( |  | 3 ) Can parse any context-free grammar Closed under union of languages Support for production priority Tool easily adapts to other parsing algorithms

46 [ 46 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Unparsing: Canonical whitespace Ambiguity: parsing  unparsing AST L / ~ L. L.  Parsing: Grammar ambiguity AST L / ~ L. L. .

47 [ 47 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Ambiguity Analysis Ambiguity Analysis: Using implementation ( ) on: Source language; Target language; and/or …all intermediate languages (somewhat expensive) (Note: Ambiguity analysis comes with XSugar tool) "Analyzing Ambiguity of Context-Free Grammars" [ Claus Brabrand | Robert Giegerich | Anders Møller ] ( CIAA 2007 ) " dk.brics.grammar " [ by Anders Møller ]

48 [ 48 ] Claus Brabrand, ITU BANANA ALGEBRA May 11, 2010 DIKU, KU, Denmark Error Reporting Error reporting: Static parse-error (O'Caml-lex): Static transformation error (XSugar): (is actually a parse-error in a cata reconstructor) Dynamic parse-error (XSugar): Dynamic transformation error: impossible :-) *** In ln2l.x (4,4)-(4,7): Parse error at "Exp" *** Parse error at character 6 (line 1, column 7) in /tmp/shape84e645.txt *** Parse error at character 23 (line 1, column 24) in /dev/stdin Could be improved Prototype


Download ppt "[ 1 ] Claus Brabrand, ITU BANANA ALGEBRA DIKU, KU, Denmark May 11, 2010 Banana Algebra: Jacob Andersen [ ] Aarhus University Claus Brabrand."

Similar presentations


Ads by Google