Download presentation

Presentation is loading. Please wait.

Published byBethany Kitts Modified over 3 years ago

1
Lecture 8 5.2 Discrete Probability

2
5.2 Recap Sample space: space of all possible outcomes. Event: subset of of S. p(s) : probability of element s of S: Probability of complement Disjoint events: Overlapping events: Three doors problem (see ex. 39 p. 362 + matlab demo)

3
5.2 We flip a coin 3 times with Heads and Tails equal probability. There are 8 possibilities: |S| = 8 E: event that an odd number of tails occurs F: first flip comes up tails HHH HHT HTH HTT THH TTH THT TTT E F S

4
5.2 HHH HHT HTH HTT THH TTH THT TTT E F S What is the probability of odd number of tails (i.e. of event E) if we know that the first flip was tails (i.e. F happened) ? If we know that F happened the total number of possible outcomes shrinks to |F| E = THH, THT, TTH, TTT. Of those there are two that make event E happen: THH, TTT. P(E|F) = 1/2 THH TTT THT TTH F E|F

5
5.2 Theorem: If E and F are two events and p(F)>0, then the conditional probability of E given F is given by: Example: What is the probability that a family with 2 kids has two boys, given that they have at least one boy? (all possibilities are equally likely). S: all possibilities: {BB, GB, BG, GG}. E: family has two boys: {BB}. F: family has at least one boy: {BB, GB, BG}. E F = {BB} p(E|F) = (1/4) / (3/4) = 1/3 E BB F GB BG GG

6
5.2 E BB F GB BG GG p(E) = ¼ P(E|F) = 1/3 HHH HHT HTH HTT THH TTH THT TTT E F S P(E)=1/2 P(E|F) = 1/2 By knowing F has happened, I have changed the probability that E has happened: they are dependent By knowing F has happened, I have NOT changed the probability that E has happened: they are independent S

7
5.2 Equivalent statement: The probability of the intersection od 2 events is the product of the probabilities of the separate events. Example: A family has 2 children (|S|=4). Is the event E that the family has children of both sexes independent from the event F that they have at most one boy? E: {BG, GB} F: {GG, BG, GB} E F: {BG, GB} dependent

8
5.2 What about a family with 3 kids ? |S| = 8 |E| = 8 – 2 = 6 (only BBB and GGG violate E). |F| =| {GGG, GBB, BGB, BBG} | = 4 =| {GBB, BGB, BBG}| = 3 independent ! (again: it’s hard to get any intuition for this).

9
5.2 Problem: We toss a coin 7 times, but the coin biased with probability 2/3 heads. What is the probability that we find 4 heads in those 7 tosses? There are C(7,4) ways to generate a sequence with 4 heads and 3 tails. (thinks of a bit-string with 0’s and 1’s). Each one of them has probability (2/3)^4 x (1/3)^3. Total: probability: C(7,4) x (2/3)^4 x (1/3)^3 More general: What is the probability of finding k 1’s in a bit-string of length n, when the probability of finding a 1 is p? Binomial distribution. (matlab demo)

10
5.2 Does it sum to 1? Recall: Use q = 1-p to prove the result.

11
5.2 Random Variables Many problems deal with real numbers rather than set memberships. E.g. What is the sum of the outcomes of 2 dice? How many times do we expect to 7 1 in bit-strings of length 12? We were able to answer those questions before, but we now introduce some formal machinery: Definition: A random variable X is a function (not a variable!) from sample space to the real numbers. It assigns a real number to each possible outcome. (and is not random!). Example: S={apple, pear, banana} X(apple) = 1, X(pear) = 2, X(banana) = 3. X: the number of times heads comes up when we toss a coin 2 times: X(TT) = 0; X(HT) = 1; X(TH) = 1; X(HH) = 2;

12
5.2 Definition: Let P(X=r) be the probability that X takes a value r. A distribution of a random variable X on a sample space S is the set of all pairs (r,P(X=r)) for all r in X(S). Thus, we specify the distribution by providing all possible P(X=r). Example: X is the number of heads of 2 coin tosses: P(X=0) = ¼ P(X=1) = ½ P(X=2) = ¼

13
5.3 Definition: The expected value of a random variable X(s) on the sample space S is given by: Sometimes, it’s more efficient to compute expectations by clumping together all elements of S that result in the same value for X(s). number of elements in S such that X(s)=r only true when all p(s) s.t. X(s)=r have equal probability. generally true

14
5.3 Example: X is number of heads in 2 coin tosses. Expected value? E(X) = 0 x P(X=0) + 1 x P(X=1) + 2 x P(X=2) = 0 + ½ + 2x ¼ = 1. We expect on average that we see 1 head. Example: X is the value of the number that comes up on a die. Expected value? E(X) = 1 x 1/6 + 2 x 1/6 + 3 x 1/6 + 4 x 1/6 + 5 x 1/6 + 6 x 1/6 = 21/6 = 7/2. (matlab demo2)

Similar presentations

OK

Section 7.2. Section Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli.

Section 7.2. Section Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on job evaluation process Ppt on india political history Ppt on artificial intelligence techniques in power systems Ppt on earthquake resistant buildings in india Ppt on natural numbers their opposites Ppt on respiration in plants and animals for class 7 Ppt on acid-base titration calculation Ppt on political parties and electoral process for kids Ppt on information security and social networking Ppt on diode as rectifiers