Download presentation

Presentation is loading. Please wait.

Published byJaeden Colbert Modified over 3 years ago

1
Periods and Frequencies Period the time that it takes for an event to repeat itself it takes about 365 days for your birthday to come around Frequency inverse of period your birthday comes once a year Frequency is a measure of how frequently an event or a process occurs. Period is the time that it takes for the event to complete one cycle.

2
Periods and Frequency in Hz, cycles per second Consider a simple spring-mass system shown at the right. If the mass is pushed down and let go it will oscillate in a manner that manifests itself by an up-and-down motion. The natural undamped frequency of the system is given

3
in Hz, cycles per second Where f n is the natural frequency of the system in cycles per second, or Hertz (Hz) k represents the stiffness of the spring or an elastic member (N/m) and m is the mass of the system (kg)

4
in seconds The period of oscillation, T, for the given system – the time that it takes for the mass to complete on cycle – is given by

5
An Example of Period and Frequency Given: a simple spring-mass system Find: the natural frequency of the system Solution:

6
8-6 Angular (Rotational) Speeds Rotational motion is quite common in engineering applications. Examples of engineering components with rotational motion include shafts, wheels, gears, drills, helicopter blades, CD drives, Zip drives, and so on. The average angular speed of a line segment located on a rotating object is defined as the change in its angular position (angular displacement) over the time that it took the line to go through the angular displacement. Ω = angular speed (rad per sec) ∆θ = angular displacement (radians) ∆t = the time interval in seconds.

7
8-7 It is a common practice to express the angular speed of rotating objects in revolutions per minute (rpm) instead of radians per second (rad/s). Convert 1600 rpm to rad/s:

8
There exists a relationship between linear and angular velocities of objects that not only rotate but also translate as well. For example, a car wheel, when not slipping, will not only rotate but also translate.

9
Determine the rotational speed of a car wheel if the car is translating along at a speed of 55 mph. The radius of the wheel is 12.5 in.

10
Engineering Fundamentals, By Saeed Moaveni, Third Edition, Copyrighted 2007 8-10 Examples of Frequencies of Various Electrical and Electronic Systems

Similar presentations

OK

Rotational Kinematics Chapter 8. Expectations After Chapter 8, students will: understand and apply the rotational versions of the kinematic equations.

Rotational Kinematics Chapter 8. Expectations After Chapter 8, students will: understand and apply the rotational versions of the kinematic equations.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on csa of cylinder Schedule appt on someone else calendar Ppt on conservation of forest Ppt on folk music of india Ppt on op amp circuits offset Ppt on pre ignition problems Ppt on obesity and overweight Ppt on water scarcity map Ppt on hindu religion song Ppt on good engineering practices