Download presentation

1
**Four Basic Types Of Measurement:**

Categorizing Nominal Ranking Ordinal Determination of the size interval Interval Determination of the size of ratios Ratio

2
**CENTRAL TENDENCY AND VARIABILITY (NOMINAL SCALES)**

Information: guessing game (ESP experiments) Background: - Transmission of signals - How much is lost in channel? - How to measure the information transmitted in a message?

3
**CENTRAL TENDENCY AND VARIABILITY (NOMINAL SCALES)**

One word - no guesses Two words - one guess Four words - two guesses Eight words - three guesses -# of guesses - power to which two needs to be raised to define # of words, or log to base 2 of # of alternatives -Number of guesses called # of bits (binary units)

4
**Varying amounts of information**

5
Nominal scales: Name of category does not imply rank, even if it is a number.

6
**Nominal Scales Assignment to categories according to a rule**

e. g., manic - depressive paranoid - schizophrenic involutional - melancholic Starting point of science Chemists - elements Physicists - atoms and sub-atomic particles Lineaus - biological categories Freud - infantile sexuality - neurotic disorders Modern Psychology does it have reliable units of analysis? Reflexes? short term memory? behavior disorders?

7
**Frequency Distributions (Nominally Scaled Data)**

Bar graph - histogram Mode - summary statistic

8
**Ordinal scales: - Numbers convey relative magnitude.**

rank of one usually assigned to highest magnitude can’t add or subtract ranks, e. g., ranks of weight Rank: Weight (lbs.) 3 3 4 2

9
**Ordinal Scales Summary Statistics:**

Central Tendency: Median (as many observations above median as below it) Variability: Range (difference between the smallest and highest values)

10
Interval scales: Size of difference is known Units are of equal size Ratio scales: True zero point exists Multiplication or division possible

11
**Magnitude of Psychological Judgments as a Function of Physical Intensity**

12
CALCULATING THE MEAN Given the raw data: 2, 4, 6, 8, 10

13
**Arithmetic Mean = Center of Gravity**

14
**Symmetrical Distributions**

Asymmetrical Distributions

15
**Symmetrical Distributions**

16
**Skewed (Asymmetrical) Distrubutions**

17
**Measures of Central Tendency in a Positively Skewed Distribution**

18
**Binomial Distributions**

19
**CALCULATING DEVIATIONS FROM THE MEAN**

Given the raw data: 2, 4, 6, 8, 10 Mean Deviation = Mean Absolute Deviation = Variance = Standard Deviation =

20
**MEASURING WITH THE STANDARD DEVIATION: Z- SCORES**

Given the raw data: 2, 4, 6, 8, 10

21
CORRELATION

22
Normal Distribution

23
r = +1.0 r = -1.0 Zy Zy Zx Zx

24
**Example of Positive Correlation**

25
**Examples of Positive, Negative and Minimal Correlation**

26
**Relationship Between r2 and Predicted Variance**

Example: measures of rainfall and corn height Suppose that r = 0.8. This means that 64% (0.8)2 of the variance of the height of corn height is accounted for by knowledge of how much rain fell.

27
**VALIDITY AND RELIABILITY**

Reliability: To what extent will a test give the same set of results over repeated measurements? Validity: To what extent does a test measures what it purports to measure? Validity and reliability are measured as correlation coefficients.

28
**Measuring reliability:**

Odd-even or split-half method: To what extent does one half of the test agree with the items of the second half of the test? Test-retest: Results of test is given on two different occasions are compared. Assumes that there are no practice effects Alternative form: Where there is a practice effect, an alternative form of the original test is given and the results are compared. A reliable test may not be valid. A valid test must be reliable may not be valid. A valid test must be reliable.

29
HERITABILITY Heritability: The proportion of variance of a phenotype that is attributable to genetic variance. Phenotype: Observable trait Genotype: What is transmitted from generation to generation What % of a phenotype is genetic? Hertiability is calculated by determining phenotypic variance and the magnitudes of its two components (genetic and environmental variance)

30
**Calculation of Heritability**

Heritability: The proportion of variance of a phenotype that is attributable to genetic variance. 2p = 2g + 2e 2 2 G E 1 + = 2 2 P P 2 G P = h2 (h2 > 0 < 1) Heritability =

31
**Which Contributes More to Area? Width or Length**

32
Heritability

33
**HERITABILITY DOES NOT. APPLY TO INDIVIDUALS. Example: h2 of IQ = 0. 6**

HERITABILITY DOES NOT APPLY TO INDIVIDUALS! Example: h2 of IQ = This does not mean that 60% of an individual’s IQ is genetic and 40% is environmental.

34
Heritability

35
**Heritability is Specific to the Population in which it’s Measured**

36
2 Minimum & maximum values of h (coefficient of heritability): h = 0.00: None of the observed values of phenotype is due to genes (all of it is due to environmental differences). h =1.00: All of variance is due to genes. __ G h2 = (h2 > 0 < 1) 2 P

37
**Examples Of Heritability Coefficients:. Piebald Holstein Cow;. h2 =**

Examples Of Heritability Coefficients: Piebald Holstein Cow; h2 = .95 (color) h2 = .3 (milk production) Pigs: h2 = .55 (body fat) h2 = .15 (litter size) h2 is specific to the environment and population studied.

38
**HERITABILITY ESTIMATES ARE SPECIFIC TO POPULATIONS AND ENVIRONMENTS IN WHICH THEY ARE MEASURED!**

Example 1: Heritability of skin color in Norway and the United States. It’s higher in the United States. Why? Because, in Norway the environment contributes more to phenotypic variation than family background. In the United States family background contributes more to variation in skin color then the environment.

39
HERITABILITY ESTIMATES ARE SPECIFIC TO POPULATIONS AND ENVIRONMENTS IN WHICH THEY ARE MEASURED! Example 2: Heritability of Tuberculosis. Decreased during the 20th century because of changes in the environment. Up to and during the 19th century, everyone who was exposed to germ got sick if they were susceptible. Improved hygiene made it less likely that genetically disposed individuals will get TB. Thus, heritability of TB decreased as environmental diversity increased.

40
**How to Reduce h2 1. Interbreed - this reduces 2g 2. Increase 2e**

How to Reduce h2 1. Interbreed - this reduces 2g 2. Increase 2e. How to Increase h2 1. outcrossing - new genes 2. mutation - new genes 3. select for rare characteristics 4. reduce 2e.

Similar presentations

OK

Psychology’s Statistics Appendix. Statistics Are a means to make data more meaningful Provide a method of organizing information so that it can be understood.

Psychology’s Statistics Appendix. Statistics Are a means to make data more meaningful Provide a method of organizing information so that it can be understood.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on different types of occupations Ppt on arunachal pradesh culture of india Ppt on video teleconferencing installation Ppt on security features of atm cards Ppt on teachers day speech Ppt on 21st century skills definition Ppt on trans-siberian railway route Disaster management ppt on uttarakhand disaster Ppt on viruses and bacteria drawings Ppt on water conservation in industries