Download presentation

Presentation is loading. Please wait.

Published byCeleste Barnett Modified over 4 years ago

1
Max Flow Min Cut

2
Theorem The maximum value of an st-flow in a digraph equals the minimum capacity of an st-cut. Theorem If every arc has integer capacity, then in a maximum flow every arc has integer flow.

3
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30

4
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Find a maximum st-flow and a minimum st-cut s t

5
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7

6
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

7
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

8
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

9
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

10
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

11
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7 STOP

12
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

13
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

14
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

15
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7

16
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7 STOP

17
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

18
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

19
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7

20
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 s t 1 3 5 2 4 8 6 9 7

21
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 s t 1 3 5 2 4 8 6 9 7

22
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 s t 1 3 5 2 4 8 6 9 7 STOP

23
1 2121 3 2 1 2 3131 3 3131 3 1 1 1 1 2121 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

24
1 2121 3 2 1 2 3131 3 3232 3 1 1 1 1 2121 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

25
1 2121 3 2 1 2 3131 3 3232 3 1 1 1 1 2121 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7 STOP

26
1 2121 3 2 1 2 3131 3 3232 3 1 1 1 1 2121 3 30 Minimum Cut s t 1 3 5 2 4 8 6 9 7

27
1 2121 3 2 1 2 3131 3 3232 3 1 1 1 1 2121 3 30 s t 1 3 5 2 4 8 6 9 7

28
1 2121 3 2 1 2 3131 3 3232 3 1 1 1 1 2121 3 30 s t 1 3 5 2 4 8 6 9 7

29
1 1 3 1 1 2 3 1 1 3 3 s t 1 3 5 2 4 8 6 9 7 So f is a max flow

30
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 Algorithm s t 1 3 5 2 4 8 6 9 7

31
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

32
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

33
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

34
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

35
1 2 3 2 1 2 3 3 3 3 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

36
1 2 3 2 1 2 3232 3232 3 3131 1 1 1 1 2 3 30 s t 1 3 5 2 4 8 6 9 7

37
Hall’s Theorem from Max Flow Min Cut

39
11111 Direct all edges from s to t and assign all arcs unit capacity Adds and t, adjacent to all of A and B respectively.

40
We have to show that Hall’s Condition gives a 1-factor.

41
A flow of value is enough to guarantee a 1-factor.

42
So all we have to do is show for each cut S.

Similar presentations

OK

Graph-Cut Algorithm with Application to Computer Vision Presented by Yongsub Lim Applied Algorithm Laboratory.

Graph-Cut Algorithm with Application to Computer Vision Presented by Yongsub Lim Applied Algorithm Laboratory.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google