Download presentation

Presentation is loading. Please wait.

Published byJalen Blackmer Modified over 2 years ago

1
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: type 2 error and the power of a test Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (review chapter). [Teaching Resource] © 2012 The Author This version available at: http://learningresources.lse.ac.uk/141/http://learningresources.lse.ac.uk/141/ Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms. http://creativecommons.org/licenses/by-sa/3.0/ http://creativecommons.org/licenses/by-sa/3.0/ http://learningresources.lse.ac.uk/

2
TYPE II ERROR AND THE POWER OF A TEST A Type I error occurs when the null hypothesis is rejected when it is in fact true. A Type II error occurs when the null hypothesis is not rejected when it is in fact false. 1

3
TYPE II ERROR AND THE POWER OF A TEST We will see that, in general, there is a trade-off between the risk of making a Type I error and the risk of making a Type II error. 2

4
TYPE II ERROR AND THE POWER OF A TEST We will consider the case where the null hypothesis, H 0 : = 0 is false and the actual value of is 1. This is shown in the figure. 3

5
TYPE II ERROR AND THE POWER OF A TEST If the null hypothesis is tested, it will be rejected only if X lies in one of the rejection regions associated with it. 4

6
TYPE II ERROR AND THE POWER OF A TEST To determine the rejection regions, we draw the distribution of X conditional on H 0 being true. The distribution is marked with a dashed curve to emphasize that H 0 is not actually true. 5

7
TYPE II ERROR AND THE POWER OF A TEST The rejection regions for a 5 percent test, given this distribution, are marked on the diagram. 6

8
TYPE II ERROR AND THE POWER OF A TEST If X lies in the acceptance region, H 0 will not be rejected, and so a Type II error will occur. What is the probability of this happening? To determine this, we now turn to the actual distribution of X, given that = 1. This is the solid curve on the right. 7

9
TYPE II ERROR AND THE POWER OF A TEST The probability of X lying in the acceptance region for H 0 is the area under this curve in the acceptance region. It is the shaded area in the figure. In this particular case, the probability of X lying within the acceptance region for H 0, thus causing a Type II error, is 0.15. 0.15 8

10
TYPE II ERROR AND THE POWER OF A TEST The probability of rejecting the null hypothesis, when it is false, is known as the power of a test. By definition, it is equal to 1 minus the probability of making a Type II error. It is therefore 0.85 in this example. 0.150.85 9

11
TYPE II ERROR AND THE POWER OF A TEST The power depends on the distance between the value of under the false null hypothesis and its actual value. The closer that the actual value is to 0, the harder it is to demonstrate that H 0 : = 0 is false. 0.150.85 10

12
TYPE II ERROR AND THE POWER OF A TEST This is illustrated in the figure. 0 is the same as in the previous figure, and so the acceptance region and rejection regions for the test of H 0 : = 0 are the same as in the previous figure. 11

13
TYPE II ERROR AND THE POWER OF A TEST As in the previous figure, H 0 is false, but now the true value is 2, and 2 is closer to 0. As a consequence, the probability of X lying in the acceptance region for H 0 is much greater, 0.68 instead of 0.15, and so the power of the test, 0.32, is much lower. 0.320.68 12

14
TYPE II ERROR AND THE POWER OF A TEST The figure plots the power of a 5 percent significance test as a function of the distance separating the actual value of and 0, measured in terms of the standard deviation of the distribution of X. 13

15
TYPE II ERROR AND THE POWER OF A TEST As is intuitively obvious, the greater is the discrepancy, the greater is the probability of H 0 : = 0 being rejected. 14

16
TYPE II ERROR AND THE POWER OF A TEST We now return to the original value of 1 and again consider the case where H 0 : = 0 is false and H 1 : = 1 is true. What difference does it make if we perform a 1 percent test, instead of a 5 percent test? 15

17
TYPE II ERROR AND THE POWER OF A TEST The figure shows the acceptance region for the 1 percent test. 16

18
TYPE II ERROR AND THE POWER OF A TEST The probability of X lying in this region, given that it is actually distributed with mean 1, is shown as the yellow shaded area. It is 0.34. The probability of making a Type II error is therefore 0.34. 0.34 17

19
TYPE II ERROR AND THE POWER OF A TEST We have seen that the probability of making a Type II error with a 5 percent test, given by the blue shaded area, was 0.15. This illustrates the trade-off between the risks of Type I and Type II error. 0.15 18

20
TYPE II ERROR AND THE POWER OF A TEST If we perform a 1 percent test instead of a 5 percent test, and H 0 is true, the risk of mistakenly rejecting it (and therefore committing a Type I error) is only 1 percent instead of 5 percent. 0.15 19

21
TYPE II ERROR AND THE POWER OF A TEST However, if H 0 happens to be false, the probability of not rejecting it (and therefore committing a Type II error) is larger. 0.15 20

22
TYPE II ERROR AND THE POWER OF A TEST How much larger? This is not fixed. It depends on the distance between 0 and 1, measured in terms of standard deviations. In this particular case, it has increased from 0.15 to 0.34, so it has about doubled. 0.15 21

23
TYPE II ERROR AND THE POWER OF A TEST To generalize, we plot the power functions for the 5 percent and 1 percent tests. 22

24
Copyright Christopher Dougherty 2011. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section R.10 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oup.com/uk/orc/bin/9780199567089/http://www.oup.com/uk/orc/bin/9780199567089/. Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course 20 Elements of Econometrics www.londoninternational.ac.uk/lsewww.londoninternational.ac.uk/lse. 11.07.25

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google