Presentation is loading. Please wait.

Presentation is loading. Please wait.

ANAEROBID DIGESTION IN FULL EVOLUTION

Similar presentations


Presentation on theme: "ANAEROBID DIGESTION IN FULL EVOLUTION"— Presentation transcript:

1 ANAEROBID DIGESTION IN FULL EVOLUTION
Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011 ANAEROBID DIGESTION IN FULL EVOLUTION W. VERSTRAETE Lab. Microbial Ecology and Technology (LabMET) Faculty of Bioscience Engineering, Ghent University Coupure L 653, B-9000 Gent, Belgium

2 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
1. THE DRIVERS From Less waste Less sludge production Lower carbon footprint To More energy recuperation Digestion is now all about kWh

3 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
1. THE DRIVERS Table 1: Examples of subsidies in different European countries for green electricity production by anaerobic digestion of agricultural waste. These values differ based on the size of the plant, and additional bonuses (Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit - BMU, 2011). Country Type €/MWhel Guaranteed years Belgium Quota (Green certificates) 120 10 Netherlands Price regulation (bonus) 79 12 Spain Price regulation 108 – 159 15 France 75 – 90* Germany Fixed compensation 20 Austria 124 – 169 Italy Quota (Certificati verdi) 220 – 280 * + additional bonuses (20 – 50 €/MWh) : Take home: €/tonCOD;150 Euro /ton DS

4 2. THE EVOLVING BIOCATALYTIC PROCESS
HM = Hydrogenotrophic Methanogenesis AM = Acetoclastic Methanogenesis Carbonic Acids and Alcohols Hydrogen 30% Carbohydrates Sugars Methane Carbon dioxide Fats Fatty Acids Hydrogen Carbon Dioxide Ammonia Acetate 70% Proteïns Amino Acids Hydrolysis Acidogenesis Acetogenesis Methanogenesis Bacteria Archaea

5 2. THE EVOLVING BIOCATALYTIC PROCESS
70% Normal waste treatment reactor systems / The old route

6 2. THE EVOLVING BIOCATALYTIC PROCESS
Proposed robust methanogenesis system, based on syntrophic acetate oxidizing (SAO) bacteria and robust HM for intensive energy production reactor systems. The new route !!!

7 2. THE EVOLVING BIOCATALYTIC PROCESS: RATE LIMITING STEPS
1. Higher VFA Acetate + H₂ pH₂ < 10-4 atm Syntrophic acetogenic bacteria (SAB) Exp: Syntrophobacter Syntrophomonas Weak bacteria td = weeks Molecular monitoring: - Generic: not available Specific: 16SrRNA probes This ‘go between ‘ group is very weak

8 2. THE EVOLVING BIOCATALYTIC PROCESS: RATE LIMITING STEPS
2. Acetate CO₂ + CH₄ Acetoclastic methanogens (AM) Exp: Methanosaeta Methanosarcina Weak archaea td = weeks Robust archaea td = days Molecular monitoring: - Generic: All methanogenic archaea have methyl coenzym-M reductans Specific: 16SrRNA probes There are now molecular methods to monitor these bugs ! ‘mcr / mrt’ gene

9 2. THE EVOLVING BIOCATALYTIC PROCESS: RATE LIMITING STEPS
3. H2 + CO2 CH4 Exp: - Methanomicrobiales Methanomicrobium Methanoculleus - Methanobacteriales Methanobacterium Methanobrevibacter Moderate archaea td = weeks Robust archaea td = days Molecular monitoring: Generic: All methanogenic Archeae have ‘mcr’ gene Specific: 16SrRNA probes We must try to work with these robust guys

10 2. THE EVOLVING BIOCATALYTIC PROCESS: RATE LIMITING STEPS
4. Acetate CO₂ + H₂ pH₂ ≤ 10-5 atm [Reversibacter of SAO] Meso Synergistic group 4 Clostridium ultenense Syntrophaceticus schinkii Tepidanaerobacter acetatoxydens Thermoacetogenium phaeum Thermotoga lettingae Thermo Weak bacteria td = weeks Robust bacteria td = days Molecular monitoring: All [homoacetogens] have the Formyl Terta Hydro Folate Synthetase (FTHFS) gene For these group op SAO : one works best Thermo

11 2. THE EVOLVING BIOCATALYTIC PROCESS
Characteristics of Methanosaeta and Methanosarcina Parameter Methanosaeta Methanosarcina μmax (d-1) Ks (mg acetate/L) NH4+ (mg/L) < < 7 000 Na+ (mg/L) < < pH-range pH-shock < Temperature range (°C) Acetate concentration (mg/L) < < (De Vrieze et al.2012 ; Biores Technol 112:1-9 ,LabMET ) The Methanosarcina can stand high conc of ammonia and salt

12 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
2. THE EVOLVING BIOCATALYTIC PROCESS Food wastes  Lactic acid - At low Bv and high HRT (=20d) mainly Methanoculleus as Hydrogenotrophic Methanogens (HM) YET: - At high Bv ≈ 36 g COD/L.d HRT = 4 d No conventional HM, archaea are mainly Methanosarcina (Shin et al., 2010; Wat. Res. 44: ) CSTR 35°C At high Bv : one needs to have the Sarcina -‘elephant’

13 Fatty acids over bicarbonate
2.THE EVOLVING BIOCATALYTIC PROCESS Tentative overview of integrative tools for monitoring of methanogenic bioreactors Conventional Unit Benchmark Gas per unit load Fatty acids over bicarbonate __________________ Conductivity (L biogas .L-¹ d-¹)/ gCOD.L-¹ d-¹ Equiv. acetate/ Equiv.HCO ̅₃ mS/cm ≥ 0.5 ≤ 0.5 ≤ 30 (De Vrieze et al.2012; Biores.Tech. 112:1-9 ,LabMET ) The conventional monitoring parameters are ‘weak’

14 2.THE EVOLVING BIOCATALYTIC PROCESS
Tentative overview of integrative tools for monitoring of methanogenic bioreactors (cont.) (De Vrieze et al. 2O12; Biores .Tech. 112: 1-9; LabMET ) Advanced Unit Benchmark Total SAO FTHFS genes Total bacteria 16SrRNA genes Total Methanogens mcrA genes Total Bacteria 16SrRNA genes Methanosaeta 16SrRNA genes Methanosarcina 16SrRNA genes % ≥ 10 Normal ≥ 10* Heavy duty ≥ 1* *Need to be further developed FTHFS = Formyl Tetra Hydro Folate Synthese MCR = Methyl Coenzyme Reductose We can monitor the ‘ microbial machinery‘ we deal with!

15 2.THE EVOLVING BIOCATALYTIC PROCESS
The moral: AD depends on a ‘microbiome’ = a team of microbes which evolved together to cooperate ; the AD microbiome operates in ‘small steps ’ Always very critical: SAB! Impose a long SRT Critical in high rate reactors: SAO bacteria Thermo is best - How to stimulate / retain these SAB & SAO? e.g. Support matrices which enrich [SAB/SAO - HM] (Chauhan & Ogram 2005; BBRC 327: 884 – 893) Carrier materials can be of help -We need an Early Warning Indicator (EWI) for these groups! Recently a new find : Ratio VVZ /Ca is very helpful in case of oily feed (Wurdemann et al ; in press )

16 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
3. THE EXPANDED POTENTIAL Methanogenic degradation of PAH is possible Naphtalene Phananthrene °C CH4 Anthracene – 35 kJ/mol Pyrene for the MPB Chrysene (Dolfing et al., 2010; Microb. Biot. 2: ) Geobacter in syntrophy with Methanosaeta - Methanosarcina Fatty acids & Aromatics present in non-productive coal (Jones et al., 2010; AEM 76: ) Biogas Take home: AD is a “omnivalent” gasification process

17 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
3. THE EXPANDED POTENTIAL Terephthalate (TA) converstion to biogas TA Acetate + H2 + CO2 Butyrate “Recycling” Acetate + H2 CH4 + CO2 (Lykidis et al., 2011; The ISME Journal 5: 122 – 130) Take home: Methanogenesis proceeds by meandering metabolism; small ‘spenders’ seize dominance in the AD energy flow

18 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
4. BIOAUGMENTATION Cold methanogens : 0.2 m3 biogas m-3 reactor d-1 at 5 – 7 °C (McFadden 2010; New Sci. 2785: 14) Hydrogen producing bacteria (HPB) E. coli, Enterobacter cloacae at 35°C Caldicellulosyruptor at 55°C (Bagi et al., 2007; AMB 73: ) LCFA degraders - Clostridium ludense : better lipid conversion (Cirne et al., 2006; J. Chem. Tech. & Biol. 81: ) - Syntrophomonas zehnderi on sepiolite for facter 2 faster conversion of oleate (Cavaleiro et al., 2010; Wat. Res. 44: 4940 – 4947)

19 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
4. BIOAUGMENTATION Constructed ligno-cellulosic cultures: Mesophilic: Methanos®: a combination of 2 Clostridia sp.; gas production from maize +20%; Bv x 2 Extra netto gain per m³ reactor per year: 50 – 100 € (personal info) Thermophilic: Pretreatment of 12h of cassava residues with inoculum : from 130 to 260 mL biogas/g VSS treated. (Zhang et al., 2011; Biores. Tech. 102: )

20 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
4. BIOAUGMENTATION “Super” Methanosarcina acetivorans Plasmid with broad-specificity esterase of Pseudomonas GMO which could grow on acetate, formate, hydrogen, methanol + methanol released from - methyl-propionate - methyl-acetate (Lessner et al., 2010; mBio 1: issue 5) Gradually , effective inocula enter the market scene

21 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
5. MONITORING THE METHANOGENIC “COLLABOROME” DGGE-patterns Who is there: 16 S DNA genes Who is doing it with whom DGGE patterns + interpretations Range-weighted richness: Rr Dynamics of change of the gel: Dy Pareto-Lorenz plot of the gel: Co Three new tools To measure maturity (Marzorati et al., 2007; Appl. Environ. Microbiol. 73: ; LabMET)

22 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
Rr (richness) 5. MONITORING THE METHANOGENIC “COLLABOROME” TVA TAC Good Poor performance (Carballa et al., 2011; Appl. Microbiol. Biotechnol. 89: ; LabMET) Richness /diversity of species is necessary

23 Narbonne Congress - December 2009
4/5/2017 Dy (Dynamics of change) (% change per 15 days) Dynamics, Dy Dynamics, Dydfdfdfdfdfd (%) ***(Low (<7%), Moderate (7–24%), High (>24%) (*Pycke et al., Water Sci. Technol. 63: ; LabMET; **Zamalloa et al., 2012; Appl Microbiol Biotechnol 93:859–869; LabMET; ***Read et al Appl Microbiol Biotechnol 90: ; LabMET) The microbiome must be dynamic ; the ghetto does not work

24 Narbonne Congress - December 2009
4/5/2017 Co (community organization) Ecological Pareto Perfect evenness (Zamalloa et al., 2012; Appl Microbiol Biotechnol 93:859–869; LabMET) Also here the 80/20 rule is valid !

25 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Lab scale Dosing electron sinks as H2-scavengers Examples - Essential oils - Tannins - Saponins - Flavonoids (Palra & Saxena, 2010; Phytochemistry 71: ) Such plant secondary metabolites inhibit HM in the rumen Take home: Some natural substances can be inhibitive

26 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Lab scale AD & BES: Bio-electochemical Systems (BES) (Logan et al., 2006; Env. Sci. & Tech. 40: ; LabMET) Take home: Thus far - MFC: 1 kg COD m-3 d-1 - MEC: 5 kg COD m-3 d-1 MEC-BEAMR: H2 is produced at 1/3 of the energy input of normal electrolysis (Sleutels et al. 2009; Int. J. Hydrogen Energy 34: 9655–9661) (Liu et al. 2005; Env. Sci. Technol. 39: )

27 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Lab scale Bio-electrochemical systems (BES) Methanogenic aggregates are electrically conductive µs/cm Water, alginate beads minimal Geobacter species ± 0.3 Aggregates ± 3 Aluminium beads 11 ± 0.1 (Malvankar et al., 2011 ; Nature Nanotechnology 6: ) Methane production depends on the transfer of electrical currents between various bacteria !!!

28 AD & BES MEC in AD Cathode and anode inside reactor
Electrolysis in the AD reactor W installed/m³ reactor provided 25% higher biogas production Electricity consumed only 25% of extra electrical energy gained (Tartakovsky et al., 2011; Bioresource Technology 102: )

29 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Lab scale Enhanced Propionic Acid Degradation (EPAD) system Can we combine a CSTR and a propionate-specific UASB? (Ma et al. 2009; Water Research, 43: ; LabMET) CSTR EPADSeparator Membrane EPADUASB Recycle Biogas

30 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale Increasing the surface of the solids Sonication, heat, … Grinding cm²/ cm³ sludge % degradation 3000 25 6000 50 (Halalsheh et al., 2011; Biores. Technol., 02: ) Physiso/chemical treatments are thus far not worth the trouble

31 6. PROCESS TECHNICAL AIDS
Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011 6. PROCESS TECHNICAL AIDS Full scale Inverted Anaerobic Sludge Blanket (IASB) Problem: LCFA cause sludge flotation  washout + dirty effluent with normal UASB Solution: Use of flotation instead of sedimentation as main biomass retention technique (Alves et al., 2010; US B2) Note: Also Paques and GWE have flotation based full scale reactors

32 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale Temperature Phased Anaerobic Digestion (TPAD) Good pathogen removal due to short thermophilic stage Better VS-removal with same reactor volume Mesophilic HRT= 15d TPAD-system HRTthermophilic = 3d HRTmesophilic = 12d (Adapted after Riau et al., 2010; Bioresource Techn. 101, )

33 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale Anaerobic Membrane BioReactor (AnMBR) Low pressure * Fluxes 5 L/m².h * Biomass 3 – 5x more concentrated; digester volumes 3 – 5 x smaller * Capex -10%; Opex -40% * Water re-use facilitated At present : 14 Kubota AnMBR in Japan (Kanai et al., 2010; Desalination 250 : 964 – 967; Christian 2009, High pressure Veolia and ADI on dairy At present some 25 anMBRs; future of ‘pocket’digestors ?

34 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale 6.1 Waters Number of non-lagoon industrial installations worldwide (After Totzke, Applied Technologies Inc.)

35 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale 6.1. Waters Number of non-lagoon industrial installations worldwide Take home: About 3500 anaerobic reactors worldwide Top players :  Paques bv 648  Biothane-Veolia  Global Water Engineering 195  Waterleau – Biotim Geographic distribution  Europe  Southeast Asia  North America  South America  Middle East/Africa 63

36 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale 6.1. Waters Number of non-lagoon industrial installations worldwide Take home: Technological :  UASB  EGSB  Anaerobic contact  Anaerobic upflow filter 90  Downflow filter Take home: - Mainly focussing on “cleaning-up” - In total some 3000 MWel worldwide

37 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale The mastodons COMP. LIRA (CLNSA) - Nicaragua UAC Reactors 102,000 kg COD/d m³ biogas/d L fossilfuel/d 50m³

38 6. PROCESS TECHNICAL AIDS
Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011 6. PROCESS TECHNICAL AIDS Full scale 6.2. MSW (municipal solid wastes ) Anaerobic digestion of MSW in Europe: About 200 plants in 17 EU countries OWS, Tenneville, Belgium About 6.0 million tons MSW (= 20 million IE ) treated per year; yields MWel Some 1.0 million tons MSW extra capacity per year (De Baere & Mattheeuws 2010; Biocycle Febr. 24)

39

40 6. PROCESS TECHNICAL AIDS
6.3 Manure & biomass European Biogas Association: 7500 agricultural digesters across EU; Germany: 6000 ! Overall electrical capacity MWel with a turnover of € 2300 billion per year (Irish Farmers Journal, Refit moving forward, )

41 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
6. PROCESS TECHNICAL AIDS Full scale The mastodons - Corn Products Amardass (Starch) - Thailand ANUBIX™ - 150,000 kg COD/d  6 MW

42 Biofuel Production Processes
Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011 7. FEEDSTOCKS Biofuel Production Processes Fuel Unit processes Wastestream Reliability Pure Plant Oil Pressing, chemical extraction, extra refinery Pressed cake High Biodiesel Esterification Glycerol residue Bio-ethanol Fermentation, distillation,… Distillery slops direct Evaporation condensates Fisher-Tropsch Diesel Gasification, FT synthesis Light oils Biogas kWh-electric + kWh-thermal Anaerobic digestion + MFC after treatment None!!! Thus far: poor Now: OK

43

44 Biorefinery: The Ghent Project
Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011 7. FEEDSTOCKS Biorefinery: The Ghent Project Plant biotechnology Industrial biotechnology Environmental biotechnology Crucial Thermochemical conversion

45 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
7. FEEDSTOCKS Ethanol 60 % Sugarcane whole crop 100% Sugar juice Ethanol fermentation Bagasse + leaves Hydrolysis Residues of vinasses bagasses leaves Normally only 40% recovery N, P, … nutrients as NSF Biogas 25 % AD Biochar 15 % Carbonisation Take home: Politics needed to make Biogas, Biochar and NSF more attractive (After Weiland, Verstraete & Van Haandel, 2009; Biofuels, ; ISBN )

46 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
7. FEEDSTOCKS Methanolic glycerol from biodiesel Methanol Glycerol Methyl-CoM H2 Acetate Acetoclastic methanogenesis 1,3 Propane Diol (1,3 DPO) Methane Output nr 1 Output nr 2 (Bizukoje et al., 2010; Bioprocess Biosyst. Eng. 33: ) Take home: Metabolic cross-feeding in a binary culture of Methanosarcina mazei and Clostridium butyricum

47 7. FEEDSTOCKS !! Addition of co-substrates > 500gCOD/L e.g.
Glycerol residues Grease and fat from slaughterhouse waste Whole crop maize Food wastes Household biosolids (Grass clippings from roadside - Not well suited: high lignine content) (Pure blood or urine from slaughterhouse - Not well suited: high N-content) Take home: By adding concentrated co-substrates, the reactor productivity can be increased with a factor 5-10

48 7. FEEDSTOCKS Algae: Lipid rich algae are best
Theorethical methane yield: LCH4/gVS Practical methane yield: LCH4/gVS (Sialve et al., 2009; Biotech. Adv. 27: ) (Chisti, 2007; Biotechnol. Adv. 25, ) (Zamalloa et al., 2011, Appl. Energy, in press; LabMET) If high productivities (>90 ton DM ha-1 year-1)+ high conversion efficiencies (>75%) + high loading rates (>10 kgCOD m-3 day-1)  Energy from microalgae can cost € kWh-1 (Zamalloa et al., 2009; Bioresource Tech. 102: ; LabMET) Micro-algae can be grown on non-agricultural soils ; yet the production is too costly and the digestion too difficult

49 COMBINED HEAT AND POWER UNIT. THE CO2 GOES TO THE ALGAL FARM
7. FEEDSTOCKS The “Zero-Waste” Water Technology UF/RO NEWater UP-CONCENTRATION SCREENING A-line (Major flow) SEWAGE COARSE MINERALS ANAEROBIC DIGESTER FILTER PRESS P-RICH CAKE BIOGAS NITROGEN-RICH WATER COMBINED HEAT AND POWER UNIT. THE CO2 GOES TO THE ALGAL FARM NATURAL STABLE FERTILIZER (NSF) PYROLYSIS BIOCHAR BRINE B-line Minor flow (max 10 %) (Verstraete et al., 2009; Bioresource Techn. 100: ; LabMET)

50 7. FEEDSTOCKS The “Zero-Waste” Water Technology
Up-concentration of “raw” domestic organics Chemically assisted primary sedimentation (CEPT) Bio-floculation or A/B-Boehnke concept Low HRT (0.4 – 1 h) High Bx (> 1.5 kg BOD kgVSS-1 d-1) Coagulation + floculation Influent UF Decantor AD Clean permeate AD (Boehnke et al., 1998; Water-Engineering & Management 145: 31-34) (Verstraete & Vlaeminck, 2010; 2de Xiamen Int. Forum on Urban Env.; LabMET) In the near future , we have to retrofit all our STP ; we must put up-concentration and digestion upfront .

51 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
8. OUTLOOK AND CHALLENGES 1. Diffuse methane emissions from storage and effluents CH4-saturated effluent of AD > 11 mg CH4/L Up to 25% of produced methane in case of low strength waters (Cakir & Stenstrom, 2005; Water research 39: ) (Hartley and Lant, 2006; Biotech. and Bioeng. 95: ) Porous burner with alumina saddles stable down to 1.1 vol%CH4 (Wood et al., 2009; Env. Sci. Technol. 43: )

52 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
8. OUTLOOK AND CHALLENGES 1. Diffuse methane emissions from storage and effluents Algae – Methanotroph co-cultures Effluent AD Algal culture + Methanotrophic bacteria No diffuse methane emissions Biomass with added value as: Protein Oil (PHB/ PHA) PUFA Antibiotics (Van der Ha et al., 2010; Appl. Env. Microbiol. 87: ; LabMET)

53 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
8. OUTLOOK AND CHALLENGES 2. Biogas desulphurization  Desulphurization coupled to lithotrophic denitrifcation Scrubbing with activated sludge Biogas free of H2S Biogas S0 To be used as a fungicide ! 2–4 kg S2- m-3 d-1 EBRT 10 min. (Basphinar et al. 2011, Process Biochemistry 46: )

54 8. Outlook and challenges
3. Special mixed cultures(Constructed consortia) : *Cellulose degraders and methanogens on cassava residues (Zhang et al. 2011; Biores. Techn. 102: ) * Methanosarcina Clostridium butyricum to produce both Biogas and 1,3 Propane Diol from methanolic glycerol in the biodiesel factory (Bizukoje et al ; Bioprocess Biosyst.Eng. 33: )

55 8.Outlook and challenges
4.Chain elongation of fatty acids & ethanol *Ethanol+ Acetate Become hydrophobic LCFA (n-caproic ) Bv : Several kg /m3.d *Harvest by -Acidification and flotation -In line membrane extraction *Use as :Feed additive/Green antimicrobials/Fuel *The microbiome consists of Clostridium / Bifidobacterium / Desulfitobacterium sp… (Agler et al. 2012; EST DOI ) (Steinbusch et al.2011; En. Env.Sci 4: )

56 (Shu et al., 2006; Bioresource Technol. 97: 2211-2216)
8. OUTLOOK AND CHALLENGES 5. Advanced recovery of phosphate A. Chemical Potato factory Colsen process Plant-derived Moerman process struvite Sewage treatment plant about 0.5 kg crude struvite per IE per year (Wallaeys Plant, Belgium) NuReSys: high quality MAP (Shu et al., 2006; Bioresource Technol. 97: )

57 8. OUTLOOK AND CHALLENGES
5. Advanced recovery of phosphate B. Biological: The ureolytic bio-catalytic process Mg NH4 PO4 (struvite) AD Effluent Urea MgO/MgCl2 + The process removes down to 2 mg PO43-- P/L + The cost is competitive with Fe3+ (Carballa et al., 2009; J. Chem. Technol. Biotechnol. 84: 63-68; LabMET) Agriculture must ‘certify’ the ‘Natural Stable Fertilizers .

58 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
8. OUTLOOK AND CHALLENGES 6. Advanced recovery of nitrogen Dry organic fertilizer Mechanical Vapor Recompression (MVR) Steamstripping + MVR

59 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
Anaerobic digestion and combustion – The Nitrogen case After Udert & Waechter, 2012, Wat. Res. 26: Manure at 4 kg N/ m³ Anaerobic digestion Biogas Partial nitrification NH4+ →NH4NO3 MF/IO to 20% volume 80% 20% Ion Exchange Distillation with vapor compression Water Solid residue with some 25% NH4NO3 Cofuel ? Costs to remove 1 kg N 0 € 0,1 € 1,0 € 3,75 € ∑ 5,0 € Calorific value per kg N ≈ 1,0 € Netto cost ≈ 4,0 € per kg N Netto cost in case of conventional N/DN: 4-5 €/kg N

60 8. OUTLOOK AND CHALLENGES
8. OUTLOOK AND CHALLENGES 7..Boosters ‘all-in-one’ dosed at 5% of Bv *Steady multi e-acceptor *All round bio-available macro & micro nutrients ( Ni, Co , W !....) (Jiang et al Renewable Energy 44: ) *Cross inoculum ( new genes ) *Calcium binder for LCFA (Kleybocker et al ; Waste Management 32: ) ( Zhang et al. 2011; J .Chem.Technol. 86: ) (Foley et al., 2010; Env. Sci. Technol. 44: Anaerobic Digestion can profit from clever additives Aalborg, Denmark; May 2009 60 60

61 (Foley et al., 2010; Env. Sci. Technol. 44: 3624-3637)
8. OUTLOOK AND CHALLENGES 8. Life Cycle Analysis (LCA) Comparisment of the LCA-data for the treatment of industrial wastewaters: AD MFC MEC (with recovery of H2O,…) Results: 1 ≈ 2 < 3 Yet: AD can be empowered with plenty extra recoveries ! (Foley et al., 2010; Env. Sci. Technol. 44: ) Anaerobic Digestion is top noth sustainable Aalborg, Denmark; May 2009 61 61

62 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
8. OUTLOOK AND CHALLENGES 9. AD Biogas based sustainable organic chemistry Flexible crop production Humus + Clean nutrient All kinds of biomass “All mash” biogas convertor Upgrading to syngas by Fisher Trops Conventional petro-chemistry Biocatalytic conversions Commodity chemicals with AD as a first line “all mash” biomass convertor (Datar et al., 2004; Biot. Bioeng. J. 86: ) (Yeuneshi et al., 2005; Biochem. Eng. J. 27: )

63 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
9. OUT OF THE BOX GMO methanogens e.g. ● Low sensitivity to NH3, H2S, salt ● Improved mixotrophic growth Industrial production of SAO + mixotrophic Methanosarcina Production of ‘all round booster inocula’ (cfr. dried yeast) Use on the farm the biogas to produce pre/pro biotics for animal husbandry Clean biogas COD

64 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
9. OUT OF THE BOX Nano-metals to enhance H2-transfer H2 e.g. BioPd (De Windt et al., 2005; Environ. Microbiol. 7, ; LabMET). Fermentative bacteria Methanogens Sugar

65 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
9. OUT OF THE BOX *High conductivities (≥ 30 mS cm-1) Electrodialysis (3 € m-3) The brine can stripped and the NH3 adsorbed (Desloovere et al ; LabMET ) Salts + NH4+ Organics ! Better digestibility * Other Nitrogen Removal to improve AD 1.air stripping 2.Ion Exchange/adsorbants 3.Reverse Osmosis 4.MFC 5…… Progress is more than welcome

66 Leipzig - Int.Conf. Biogas Microbiology - VW&JDV - Sept2011
10. CONCLUSIONS AD becomes a player in MegaWatt energy supply The AD microbiology is up for revision! Other workhorses and microbiomes are possible Bioaugmentation comes of age ! Special ‘ booster products ’ are coming on the market Plenty of new technical aids e.g. electro-assisted AD are under development New feedstocks & new outputs (e.g. via designed co-cultures) Biomethane fits in - the biorefinery - the bioeconomy AD is fine in terms of LCA! AD is bound to grow in overall importance


Download ppt "ANAEROBID DIGESTION IN FULL EVOLUTION"

Similar presentations


Ads by Google