Download presentation

Presentation is loading. Please wait.

Published byNoah Callahan Modified over 5 years ago

1
Transformations of Points f(x + a) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)f(x + 1) (0, 4) (2, 1)

2
Transformations of Points f(x – a) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)f(x - 1) 1 (2, 4) (4, 1)

3
Transformations of Points f(x) - a 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)f(x) - 4 -4 (1, 0) (3, -3)

4
Transformations of Points nf(x) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)2f(x) 0 (1, 8) (3, 2)

5
Transformations of Points f(nx) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)f(2x) 0 (0.5, 4) (1.5, 1)

6
Transformations of Points -f(x) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)-f(x) 0 (1, -4) (3, -1)

7
Transformations of Points f(-x) 0 (1, 4) (3, 1) Imagine a function where y = f(x), which has a root at 0, and points (1, 4) and (3, 1) lie on the curve: f(x)f(-x) 0 (-1, 4) (-3, 1)

Similar presentations

OK

200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 Double Integrals Area/Surface Area Triple Integrals.

200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 Double Integrals Area/Surface Area Triple Integrals.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google