Download presentation

Presentation is loading. Please wait.

Published byKyle Bruce Modified over 3 years ago

1
**Defining and Measuring the Partisan Fairness of Districting Plans**

Andrew Gelman, David Epstein, Sharyn O’Halloran and Jared Lander Departments of Statistics and Political Science Columbia University 8 Jan 2008

2
2003 Texas Redistricting Texas House delegation went from Democrat in 2002 to Republican in 2004 (while voting 61%-38% for Bush) Is this an unfair partisan gerrymander? Supreme Court (Kennedy) said there is no workable standard

3
**Outline: Standards of fairness**

Some historical background The proportionality standard and its problems The seats-votes curve The symmetry standard and its problems Toward a comparative standard “Fairness” matters For the courts For democracy Need fairness standard to determine what’s unfair

4
**Some historical background**

5
**Some historical background**

6
**Some historical background**

“Gerrymandering” isn’t as bad as people think Gelman and King (1994b) Empirically, redistricting decreases partisan bias and increases competitiveness Why? Because redistricters work under many constraints But fairness is still a concern

7
**The proportionality standard**

Popular in Europe, via PR electoral systems “Fairness” is If your party receives x% of the vote, it should receive x% of the seats This does not work, in general, with first-past-the-post systems such as the U.S. Can win 55% of the vote in every district,100% of the seats. In fact, can win a majority with ~25% of the votes In general, bonus for majority party (e.g., cube law) So how do we describe the relation between voter behavior and electoral outcomes?

8
The seats-votes curve This describes the function S(V), the seats won S for a given percentage V of the vote For a single election, calculate this as follows: Take the vector of votes V = (V1, V2, …, V435), where Vi is the percentage of Democratic votes in district i From this get the average Democratic vote and percentage of seats won by the Democrats – this is the actual electoral outcome Now consider the vector V+1% = (V1+1, V2+1, …, V435+1) I.e., a uniform partisan swing of 1% for the Democrats Perform the same calculations for V+ x% for all values of x This will fill out the range, yielding a nondecreasing function S(V) This is the seats-votes curve

9
The seats-votes curve

10
The seats-votes curve Traditionally (since Edgeworth, 1898) thought of as a deterministic function: S(V) Actually it’s probabilistic: p(S|V) Usually summarized by its expectation: E(S|V)

11
**The symmetry standard “Fairness” is . . . E(S|V) = 100 – E(S|1-V)**

For example, in 2008 the Democrats averaged 56% of the vote in U.S. House races and received 59% of the seats. This is symmetric (i.e., “fair”) if the Republicans would have received 59% of seats had they won 56% of the vote In particular, symmetry requires that E(S|V=0.5) = 0.5 King and Browning (1987): partisan bias defined as deviation from symmetry Gelman and King (1990, 1994a): empirical estimate of partisan bias by extrapolation

12
**Problems with symmetry standard**

Problem 1: Need to extrapolate to 50% Consider a state such as Massachusetts It will never be 50-50, so how can we tell what’s fair? Problem 2: Mixing apples and oranges Seats-votes calculations use all districts at all points along the curve to estimate the relationship So we use Montana to estimate Massachusetts, and vice-versa Real problem is that the S(V) curve is designed to answer questions about the electoral system as a whole E.g., bias (intercept at V=.5) and responsiveness (slope at V=.5) Less useful when we’re interested in behavior away from the mark But each election gives us 50 data points, not just one…

13
**Toward a comparative standard**

Goal: to solve the “Massachusetts problem” Not merely an academic exercise! Consider the 2003 Texas redistricting Availability of computer programs will make this worse Method of overlap For any state, extrapolate a bit in either direction (based on historical levels of variation) Compare a state to similar historical cases A chain of extrapolations gets you to 50% (and symmetry) Symmetry is thus a baseline but not always a direct standard

14
**Seats-votes curves from state congressional delegations**

For each state and each election, extrapolations +/- 5% using uniform partisan swing Create hypothetical elections, adding x% to Dem. share in each district, with x = -5.0, -4.9, -4.8, , +4.9, +5.0 Full implementation would also add noise (“JudgeIt”) These will overleaf with each other, creating an overall seats- votes curve with a range of variation at each point Variation is within states with similar partisan makeups Then can obtain semi-parametric confidence intervals, taking into account state size, incumbency, etc.

16
1900 1920 1940 1960 1980 2008

17
**Overall, get something that looks like a confidence band**

Can use this to judge proposed districting plans

18
**Overall, get something that looks like a confidence band **

Texas Overall, get something that looks like a confidence band Can use this to judge proposed districting plans

19
Discussion Traditional methods of analysis are not well-designed to assess the fairness of districting plans for states that are far from a partisan split We propose instead the aggregation of local seats-votes curves to provide variation across states and over time These can be used to estimate normal seats-votes relationships for states with high levels of partisanship Then, define unfair districting relative to this standard See if Kennedy goes for it…

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google