Presentation is loading. Please wait.

Presentation is loading. Please wait.

Congruent Triangles In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure. This means there.

Similar presentations


Presentation on theme: "Congruent Triangles In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure. This means there."— Presentation transcript:

1 Congruent Triangles In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure. This means there will be corresponding sides that are congruent. There will also be corresponding angles that are congruent. A coordinate proof involves placing geometric figures in a coordinate plane. What are the corresponding sides? What are the corresponding angles?

2 Congruent Triangles Which triangles are congruent by the SSS Postulate? Not congruent by SSS

3 Congruent Triangles Are these congruent by SAS? How about: Are these congruent by HL? Not right triangles!

4 Congruent Triangles Are these triangles congruent by ASA? Yes! Are these triangles congruent by ASA? No

5 Congruent Triangles Are these triangles congruent by AAS? How about now? NoYes

6 Congruent Triangles There are a couple of methods for organizing your thoughts when proving triangle congruency. The first is to use a two-column proof. The second is to use a flow proof.

7 Congruent Triangles Given: Prove:

8 Congruent Triangles A flow proof uses arrows to show the flow of a logical argument. Just like a flow chart does!

9 Congruent Triangles So remember: SSS, SAS, ASA, AAS Postulates and the HL Theorem will help everyone to be congruent. But be careful during a test! Make sure you dont need to call AAA to bail out your SSA.

10 Congruent Triangles Problems Pg 239 #15-16 Pg 245 # Pg 247 #9-10 Pg 254 #15-16

11 Triangle Relationships –Inequality The longest side and largest angle are opposite each other. The shortest side and smallest angle are opposite each other.

12 Triangle Relationships SOLUTION Draw a diagram and label the side lengths. The peak angle is opposite the longest side so, by Theorem 5.10, the peak angle is the largest angle.

13 Triangle Relationships –Inequality Is it possible to construct a triangle with the given lengths? 3, 5, 9 Not Possible 5+9 > > > 9 Does not work! Is it possible to construct a triangle with the given lengths? 6, 8, > > > 8 It is Possible! ____________________________________________________________________________________

14 Triangle Relationships What can we say about angle 1? Think about it: The angles of a triangle have to sum to 180. The angles that form a line must sum to = Thus so and

15 Triangle Relationships –Hinge Theorem

16 Triangle Relationships –Hinge Theorem CD, BC, BD, AB, AD

17 Triangle Relationships Problems Pg 287 #1-10, Pg 294 #1-13

18 Triangle Relationships –Perpendicular bisectors Does this triangle have a perpendicular bisector? How do you know? Yes, segment BD Theorem 5.3 proves D is on the perpendicular bisector and BD makes a right angle with AC at its midpoint.

19 Triangle Relationships Where is the point of concurrency in this triangle? What special type of point of concurrency is this? What is special about the red lines? Point G It is a circumcenter. They are congruent. **Note: The circumcenter can be outside of the triangle if you have an obtuse triangle!

20 Triangle Relationships Problems Math I Pg 266 #1-18 Pg 268 #1-9

21 Triangle Relationships Angle Bisectors What is the angle bisector? How do you know? FH The Angle Bisectors Theorem

22 Triangle Relationships A soccer goalies position relative to the ball and goalposts forms congruent angles, as shown. Will the goalie have to move farther to block a shot toward the right goalpost R or the left goalpost L ? SOLUTION The congruent angles tell you that the goalie is on the bisector of LBR. By the Angle Bisector Theorem, the goalie is equidistant from BR and BL. So, the goalie must move the same distance to block either shot.

23 Triangle Relationships Medians What are the medians? Where is the centroid? What is the length of DG? BG, CE, AF At D DG = 6

24 Triangle Relationships Altitudes Fun Fact: The orthocenter likes to travel!

25 Triangle Relationships Problems Math I Pg 274 #1-12, Pg #1-20 Pg 282 #1-5


Download ppt "Congruent Triangles In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure. This means there."

Similar presentations


Ads by Google