Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 L2: Structures 2: Observational laws and proper theories. SSC: S2 (9-12), S12 (40) Nagel: intuitive distinction: +/- theoretical terms Dynamic factor.

Similar presentations


Presentation on theme: "1 L2: Structures 2: Observational laws and proper theories. SSC: S2 (9-12), S12 (40) Nagel: intuitive distinction: +/- theoretical terms Dynamic factor."— Presentation transcript:

1 1 L2: Structures 2: Observational laws and proper theories. SSC: S2 (9-12), S12 (40) Nagel: intuitive distinction: +/- theoretical terms Dynamic factor for explanatory programs and between descriptive and explanatory programs However: no theory-free/-neutral observation terms Hence, explication to be based on a theory-relative explication of theoretical and observation terms Ex. the ideal gas law: first/second face

2 2 Theory-relative explication proper theory: terms laden with theory itself observational laws: improper theories epistemological distinction/stratification byproducts: –the hierarchy of knowledge and the long-term dynamics –disentanglement “theory-ladenness of observations”: example: the periodic table of the chemical elements

3 3 Fragment from the hierarchy of knowledge

4 4 Classification of observations in relation to theory X

5 5 Ontological stratification Two essentially independent distinctions that frequently go together ontological: two (or more) kinds of entities, one kind being components of the other micro-level and macro-level principles that only concern the micro-entities: micro- or internal principles, principles that connect: bridge principles atomic theory: both stratifications

6 6 Non-empirical theories metaphysical theories are supposed to make claims about reality without assuming any particular conceptualization or, equivalently, they make claims generalizing over conceivable conceptualizations of reality mathematical and logical theories deal with defined abstract objects, i.e., mental constructs, e.g., group theory conceptual theories concern ways of looking (perspectives) at a certain domain, normative theories deal with what is (supposed to be) ethically, legally, aesthetically (in)admissible

7 7 The structuralist approach to (empirical) theories Ex: the slide balance

8 8 The naïve theory > contains iff 1) P is a finite set(particles) and Pl a subset of P (particles left of S ) 2) d: P  IR + ( d(p) : distance p S ) SBp 3) w: P  IR + ( w(p) : weight of p ) 4) the law of the balance SB  p  Pl d(p).w(p) =  p  P  Pl d(p).w(p)

9 9 Naïve claims SBp  SB empirical content:: non-empty E  SBp conceptual claim: the intended domain of applications D can be represented as potential models, the naïve intended applications E  SB naive weak empirical claim the intended applications are equilibrium models E=SB naive strong empirical claim SBp SB

10 10 The refined theory > contains iff ---> contains =  iff 1) P is a finite set(particles) and Pl a subset of P (particles of S ) SBpp 2) d: P  IR + ( d(p) : distance p S ) SBp 3) w: P  IR + ( w(p) : weight of p ) 4) the law of the balance SB  p  Pl d(p).w(p) =  p  P  Pl d(p).w(p)

11 11 Refined claims SBpp  SB empirical content without w -constraint empty, with w - constraint non-empty E  SBpp conceptual claim: the intended domain of applications D can be represented as potential partial models, the refined intended applications E   SB weak empirical claim the intended applications can be extended to models E=  SB strong empirical claim

12 12 is an epistemologically stratified theory iff Mp :potential models: a set of structures of a certain type Mpp :potential partial models: the substructures of Mp restricted to non-theoretical components M models: the potential models ( M  Mp) satisfying all axioms  : Mp  Mpp :the projection function (from Mp onto Mpp )  X={  (x)/x  X}, for X  Mp, hence X   Mpp  M :projected models Mpp   M :empirical content D :intended domain of applications I  Mpp :intended applications (non-theoretical): conceptual claim: non-theoretical representation of D leads to the subset I of Mpp I   M :empirical claim (strong claim: I =  M )

13 13 Refined empirical claim: shaded area empty  

14 14 Mpp (potential partial models):NA Mp (potential models):NA + TA Mpart (partial models): NA + NS M (models): NA + TA + NS + TS Decomposition of axioms by controversial distinction(s) A/S: analytic / substantive axioms N/T: non-theoretical / theoretical

15 15 Absolute and relative empirical content  Mpp   M :(absolute) empirical content AEC Mpp  Mpart :partial empirical content PEC Mpart   M: relative empirical content REC

16 16 The set of intended applications I, and its determination “I is D seen through Mpp” Determination of D, Mpp (hence I), Mp, M is a ‘dialectical process’ If Mpp is supposed to be fixed, 3 ways for I –empirical determination: if interested in all nomic Mpp- possibilities To (or a well-defined subset of it) –auto-determination: I = To  M –paradigmatic determination, see below Always: two sides:conceptually relative & objective

17 17 Definition: I is paradigmatically determined if there are PAR and SIM such that 0. To : set of nomic Mpp-possibilities 1. I is a subset of To the intended applications 2. PAR is a finite subset of I the paradigmatic examples 3. SIM is a binary relation on Mpp a similarity relation 4. for all x in I  PAR there is y in PAR such that SIM(x,y)

18 18 Mpp

19 19 Constraints of and links between theories Definition: C is a constraint on the set S iff 1) C is a set of subsets of S 2) the union of the sets in C exhausts S ( UC=S ) 3) if X is in C and Y is a subset of X then Y is in C (subset-preservation) Links specialization: subsets of D and/or M theoretization: (new) theoretical components reduction: reproduction of one theory in another

20 20 A theory net

21 21 Hiërarchie van epistemologische posities Q0: onafhankelijke natuurwerkelijkheid?Nee  ontologisch idealisme  Ja: ontologisch realisme Q1: ware claims mogelijk?Nee  epistemologisch relativisme - ervarings-scepticisme  Ja: epistemologisch realisme - inductief scepticisme Q2: voorbij waarneembaar?Nee  observational realisme - instrumentalisme  Ja: wetenschappelijk realisme - constructief empiricisme Q3: voorbij referentie?Nee  referentieel realisme  entiteiten realisme  Ja: theorie-realisme Q4: ideale conceptualisering?Nee  constructief realisme  Ja: essentialistisch realisme

22 22 Vier perspectieven voor theorie-realisme

23 23 Soorten actuele en nomische waarheidsbenadering PM: het beste afleidingsinstrument: instrumentalist observationeel: constructive empiricist referentieel:referentieel realist theoretisch:constructief realist essentialistisch:essentialistisch realist PM: “de waarheid”: de sterkste ware theorie over een gegeven domein in een gegeven vocabulair

24 24 Conclusies ICR vooruitblik: How to approach the truth? goede redenen voor overstap:instrumentalist 1  constructief empiricist 2  referentieel realist 3  constructief realist, maar niet voor 4  essentialist 1,2  3 tbv lange termijn dynamiek: theorieën als waar accepteren  levert nieuwe observatietermen instrumentalistische methode efficiënter voor waarheids- benadering dan falsificationistische methode hiërarchie van heuristische posities, geen dogma –everything goes sometimes –reculer pour mieux sauter


Download ppt "1 L2: Structures 2: Observational laws and proper theories. SSC: S2 (9-12), S12 (40) Nagel: intuitive distinction: +/- theoretical terms Dynamic factor."

Similar presentations


Ads by Google