Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Similar presentations


Presentation on theme: "Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg."— Presentation transcript:

1 Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg

2 Copernicus Institute Sustainable Development and Transition Management Energie en duurzame ontwikkeling Beschikbaarheid van energiedragers Toegankelijkheid tot energiebronnen Betaalbaarheid van energie Betrouwbaarheid van de energievoorziening Kwetsbaarheid van de energievoorziening Milieugevolgen van ons energiegebruik

3 Copernicus Institute Sustainable Development and Transition Management Sustainable Energy: Energy that is produced and used in ways that simultaneously support human development over the long-term in all its social, economic, and environmental dimensions. Source: World Energy Assessment, 2000

4 Copernicus Institute Sustainable Development and Transition Management Strategie Benutting lokale energiebronnen Verbetering efficiency van ons energie- en materiaalgebruik Ontwikkeling en gebruik hernieuwbare energiebronnen Milieuvriendelijker gebruik van conventionele bronnen

5 Copernicus Institute Sustainable Development and Transition Management Transitiemanagement Vergt een overheid die niet terugtreedt Is meer dan initiëren van enkele projecten Vergt een systeembenadering Vergt maatschappelijk draagvlak Vergt internationale samenwerking Vergt middelen voor R,D,D&D

6 Copernicus Institute Sustainable Development and Transition Management World primary energy consumption in 1998 Fossil fuels: 320 EJ (80%) - oil142 EJ - natural gas 85 EJ - coal 93 EJ ______________________________________________________________________________________________ Renewables: 56 EJ (14%) - large hydro 9 EJ - traditional biomass 38 EJ - ‘new’ renewables 9 EJ ______________________________________________________________________________________________ Nuclear: 26 EJ (6%) ______________________________________________________________________________________________ Total: 402 EJ (100%) Source: World Energy Assessment, 2000

7 Copernicus Institute Sustainable Development and Transition Management

8 Copernicus Institute Sustainable Development and Transition Management Productivity of our energy consumption EJ% Primary energy400100 Final energy30075 Useful energy15037 Energy service<60<15

9 Copernicus Institute Sustainable Development and Transition Management Outlook for More Efficient Use of Energy Cost effective over the next 20 years to reduce primary energy consumed per unit of energy services OECD Countries 25-35% Developing Countries 30- >45% Economies in transition>40% Greater gains in efficiency feasible with advanced energy technologies that offer multiple benefits Source: World Energy Assessment, 2000

10 Copernicus Institute Sustainable Development and Transition Management ICARUS-4

11 Copernicus Institute Sustainable Development and Transition Management ICARUS-4

12 Copernicus Institute Sustainable Development and Transition Management Contribution ‘new renewables’ 1998 share in world primary energy consumption __________________________________________ - Modern biomass:~ 7 EJ - Geothermal: 1.8 EJ - Small hydro: 0.3 EJ - Wind turbines: 0.07 EJ - Low temp. solar energy: 0.05 EJ - Solar Thermal Electricity: 0.004 EJ - Solar PV: 0.002 EJ ______________________________________________________________________________________________________ Total: ~ 9 EJ Source: Wim C. Turkenburg et al, WEA, 2000

13 Copernicus Institute Sustainable Development and Transition Management Elektriciteitsproductie uit duurzame bronnen in Nederland 1990-2000 0 0.5 1 1.5 2 2.5 3 19881990199219941996199820002002 Elektriciteit uit duurzame bronnen (TWh) Waterkracht 85 GWh Andere biomassa 84 GWh Wind 54 GWh Org. fracties avi’s 500 GWh PV 0.31 GWh Waterkracht 142 GWh Andere biomassa 655 GWh Wind 829 GWh Org. fractie avi’s 918 GWh PV 7 GWh 1990 2000 Bron: Duurzame energie in Nederland, Novem, 1998, 2000

14 Copernicus Institute Sustainable Development and Transition Management Technical Potential Renewables Supply in 1998Technical potential Biomass 45 ± 10 EJ 200-500 EJ/y Wind 0.07 EJ 70-180 EJ/y Solar 0.06 EJ 1,500-50,000 EJ/y Hydro 9.3 EJ 50 EJ/y Geothermal 1.8 EJ 5,000 EJ/y Marine - n.e. Source: W.C. Turkenburg, Utrecht University, 2002

15 Copernicus Institute Sustainable Development and Transition Management Potential contribution renewables Source: N. Nakićenović et.al., WEA, 2000

16 Copernicus Institute Sustainable Development and Transition Management Biomass energy conversion Sources: - plantations - forests residues - agricultural residues - municipal waste - animal manure - etcetera

17 Copernicus Institute Sustainable Development and Transition Management 2000 (PJ)2020 (PJ) Energieteelt0.040-20 Schone reststromen (b.v. Snoeihout, bermgras) 204-40 Omstreden reststromen (b.v. varkensmest, rioolslib) 153-50 Gemengde afvalstromen (b.v. organische factie huish. Afval) 48 42-51 Totaal8349-160 Bron: Marsroutestudie, Novem, 2000 Mogelijke beschikbaarheid biomassa- en afvalstromen, nu en in 2020

18 Copernicus Institute Sustainable Development and Transition Management Biomass energy conversion Production of heat: improved stoves, advanced domestic heating systems, CHP. Production of electricity: (co-)combustion, CHP, gasification (BIG-CC, engines), digestion (gas engines). Production of fuels: ethanol, biogas, bio-oil, bio-crude, esters from oilseeds, methanol, hydrogen, hydrocarbons. Produced by: extraction, fermentation, digestion, pyrolysis, hydrolysis, gasification and synthesis.

19 Copernicus Institute Sustainable Development and Transition Management Status biomass energy Cost biomass from plantation: already favorable in some developing countries (1.5-2 $/GJ). Electricity production costs at present often: 0.05-0.15 $/kWh. New technology (BIG-CC) may reduce electricity production costs to 0.04 $/kWh. Advanced technologies needed to produce bio-fuels (methanol, hydrogen, ethanol) at competitive cost (6-10 $/GJ). Source: W.C. Turkenburg et.al., WEA, 2000

20 Copernicus Institute Sustainable Development and Transition Management Biomass energy development strategies More experience with, and improvement of, the production of energy crops. Creating markets for biomass. Development and demonstration of key conversion technologies. Poly-generation of biomass products and energy carriers from biomass. Policy measures like internalizing external costs and benefits.

21 Copernicus Institute Sustainable Development and Transition Management Gasification and gas cleaning Reforming, Shifting, CO 2 separation Methanol production Fischer Tropsch Gas separation Pore enlargement Ethanol Drying and Chipping Chipping Gas Turbine or boiler Steam Turbine BiomassElectricity Gas Turbine or boiler Steam Turbine Electricity Methanol Diesel Hydrogen HydrolysisFermentation Biofuels for transportation

22 Copernicus Institute Sustainable Development and Transition Management Modern wind energy

23 Copernicus Institute Sustainable Development and Transition Management

24 Copernicus Institute Sustainable Development and Transition Management Future development wind Wind turbines become larger. Wind turbines will have fewer components. Special offshore designs. 10 percent grid penetration maybe around 2020. Installed capacity in 2030 could be 1,000 – 2,000 GW. Potential development energy production costs: 0.05 –> 0.03 $/kWh (+ 0.01 $/kWh for storage).

25 Copernicus Institute Sustainable Development and Transition Management Experience curves Source: IIASA, 1998

26 Copernicus Institute Sustainable Development and Transition Management Solar PV stand-alone systems consumer products telecom leisure water pumping lighting & signalling rural electrification etc. PV-pumped cattle drinking trough (NL) Solar Home System (Bolivia) Source: W.C. Sinke, ECN, NL, 2001

27 Copernicus Institute Sustainable Development and Transition Management Grid-connected PV systems building- & infrastructure-integrated PV – roofs – facades – sound barriers – etc. ground-based power plants “City of the Sun” 50,000 m 2 PV (NL) PV sound barrier (NL) “PV gold” (Japan) Source: W.C. Sinke, ECN, NL, 2001

28 Copernicus Institute Sustainable Development and Transition Management PV systems user PV grid dc/ac grid-connected PV system user PV regulator (storage) stand-alone PV system Source: Wim C. Sinke, ECN, 2001

29 Copernicus Institute Sustainable Development and Transition Management - Average growth: 18% per year - Market 1999: 85% c-Si / 13% a-Si / 2% rest

30 Copernicus Institute Sustainable Development and Transition Management Potential development Solar PV Investment costs grid-connected PV-systems may come down from 5-10 $/W –> 1 $/W. Energy payback time may come down from 3-9 years –> 1-2 years (or less). Electricity production costs may come down from 0.3-2.5 $/kWh –> 0.05-0.25 $/kWh. PV can play major role in rural electrification. Source: W.C. Turkenburg et.al., WEA, 2000

31 Copernicus Institute Sustainable Development and Transition Management Major options to reduce costs Increase conversion efficiency (of the cell, the module and the system). Strong reduction in material use (thin film solar cell development). Mass production of PV components (module plants of 50-100 MWp/year). Reduction Balance-of-System costs (e.g. multi-functional use of PV area).

32 Copernicus Institute Sustainable Development and Transition Management Energy losses in PV systems

33 Copernicus Institute Sustainable Development and Transition Management

34 Copernicus Institute Sustainable Development and Transition Management Bron: Alsema & Nieuwlaar, Energy Policy, 2000 Energy analysis of photovoltaic systems

35 Copernicus Institute Sustainable Development and Transition Management Toekomstig werk PV-milieu LCA van geavanceerde kristallijn-silicium technologie LCA van energie-opslagsystemen leercurves van PV systemen monitoring van decentrale PV systemen m.b.v. sattelietdata (voor instraling)

36 Copernicus Institute Sustainable Development and Transition Management

37 Copernicus Institute Sustainable Development and Transition Management

38 Copernicus Institute Sustainable Development and Transition Management

39 Copernicus Institute Sustainable Development and Transition Management CO2 capture options

40 Copernicus Institute Sustainable Development and Transition Management


Download ppt "Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg."

Similar presentations


Ads by Google