# Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory.

## Presentation on theme: "Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory."— Presentation transcript:

Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory 8. Shape development techniques Definition of surfaces for the boundary László Horváth university professor http://users.nik.uni-obuda.hu/lhorvath/

Contents László Horváth ÓU-JNFI-IIES http://nik. uni-obuda.hu/lhorvath/ Multi-Sections Surface Lecture Laboratory Curves for surface definition in reference planes Creating the complex solid shape as it is illustrated in surface definitions of the lecture 8. Integrated laboratory task VE8.1-8.3: Blend surface Swept surface Joining surfaces Tabulated surface Fillet surface on solid Limiting solid by surface Solid between boundary and its offset Angle of a surface (draft) in boundary

Curves for surface definition in reference planes László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Multi-Sections Surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ Sweeping one or more section curves along an automatically computed or user-defined spine.

Swept surface Generator Path Spine joint Profiles Boundary curves Basic parameters Spine Rotation and scale along path László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ Sweeping a generator curve through planes normal to a spine curve.

Swept surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Blend surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ Surface between two curves. Constraints: continuity, etc.

Tabulated surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ Moving a contour along a vector. Swept area is the surface.

Tabulated surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Joining surfaces László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ An operation to assemble adjacent surfaces into a single surface.

Limiting solid by surface László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Fillet surface on solid Constant radiusVariable radius Rounded cornerCorner Transitional fillet László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Fillet surface on solid: constant radius László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Fillet surface on solid: constant radius László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Fillet surface on solid: variable radius László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Solid between boundary and its offset László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Solid between boundary and its offset László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Solid between boundary and its offset László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ This curve modification results irregular geometry in boundary.

Solid between boundary and its offset László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ This curve modification results irregular geometry in boundary.

Solid between boundary and its offset László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ This curve modification results correct geometry in boundary.

Angle of a surface (draft) in boundary László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Angle of a surface (draft) in boundary László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Angle of a surface (draft) in boundary László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/

Definition of shape in solid boundary using surface representations Laboratory task VE8.1 Creating the complex solid shape as it is illustrated in surface definitions of the lecture 8. László Horváth ÓU-IAM http://users.nik.uni-obuda.hu/lhorvath/ Integrated laboratory task VE8.1-8.3:

Download ppt "Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory."

Similar presentations