Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introductie Dan Veen Van 1991-1996 studeerde Dan Veen Werktuigbouwkunde aan de Hogeschool Utrecht. Na het behalen van zijn diploma heeft hij 4 jaar op.

Similar presentations


Presentation on theme: "Introductie Dan Veen Van 1991-1996 studeerde Dan Veen Werktuigbouwkunde aan de Hogeschool Utrecht. Na het behalen van zijn diploma heeft hij 4 jaar op."— Presentation transcript:

1

2 Introductie Dan Veen Van studeerde Dan Veen Werktuigbouwkunde aan de Hogeschool Utrecht. Na het behalen van zijn diploma heeft hij 4 jaar op divers functies binnen het gastechnisch ingenieurs- en onderzoeksbureau Gastec Apeldoorn gewerkt. Hierna heeft hij een overstap gemaakt naar een commerciele buitendienstfunctie bij Freudenberg Simrit in Naarden. In 2004 is hij bij Wärtsilä Services in Schiedam in dienst getreden als accountmanager, waar hij verantwoordelijk was voor de commerciele relaties en verkoop aan klanten in de baggerindustrie. Tussen 2005 en 2007 heeft hij zijn master in de Bedrijfskunde, specialisatie Financieel Management gehaald. Tussen 2008 en medio 2010 is hij verantwoordelijk geworden voor de Services Sales afdeling. In 2010 is hij overgestapt naar een functie Manager Sales Development voor de regio Noord Europa. Zijn specialisme hierin liggen vooral op het gebied van emissieswetgeving, nabehandeling en het gebruik van alternatieve brandstoffen zoals LNG.

3 Shipping in the future Dan Veen Sales Development Manager – North Europe Bebeka Seminar Europort, 10 November 2011

4 16 largest ships emit as much as all 800 million cars in the world One ship can emit 5000 tons of sulphur per year (source: The Guardian) If the shipping industry were a country, it would be the 7th largest producer of CO 2 in the world. (source: Shipefficiency.org) Absolute numbers 2

5 IMO sulphur limits 0,1% 4,5% 3,5% 1,5% 1,0% 0,5% World EU in ports SECA 4,5 3,5 1,51,0 0,50,1 67%78%71%86%97% 78% 3 © Wärtsilä

6 NO x reduction – IMO requirements and methods Specific NO x emissions (g/kWh) Rated engine speed (rpm) Tier II (global 2011) Ships built 2011 onwards Engines > 130 kW Tier III (ECAs 2016) Ships in designated areas, 2016 onwards Engines > 130 kW Tier I (present) Ships built 2000 onwards Engines > 130 kW Retrofit: Ships built 1990 – 2000 Engines > 90 litres/cylinder and > 5000 kW Dry/Wet Methods 4 Selective Catalytic Reduction Wärtsilä dual-fuel technology 4 © Wärtsilä

7 Introduction - Emission control areas existing ECAs: Baltic Sea, North Sea planned ECAs: Coasts of USA, Hawaii and Canada discussed ECAs: Coasts of Mexico, Coasts of Alaska and Great Lakes, Singapore, Hong Kong, Korea, Australia, Black Sea, Mediterranean Sea (2014), Tokyo Bay (in 2015) Most used trading routes Proliferation of ECA areas is expected in the next future 5 © Wärtsilä

8 How to eliminate SO X – Alternatives Method / SolutionAdvantageDisadvantage Scrubber Installation of exhaust gas cleaning system Lowest cost Use everywhere Easy operation Works with high % S ROI depends on LSHFO fuel price 1.5 % S fuel or MDO Switch over in SECA areas Flexible Small investment High operating cost Fuel change over Fuel availability BN management MDO Run full time on MDO Convenient No change over High operating cost Tank size Other Emission trading. Not yet in force for SO X Cold ironing (shore power). Only possible at berth – not a solution for SO X abatement at sea.

9 Fresh water scrubber working principle Closed loop works with freshwater to which NaOH is added for the neutralization of SO X Closed-loop means zero discharge in enclosed area Parasitic losses approx. 0.5% of the fuel consumption (3% on SW) Scrubber pH NaOH unit Fresh water Water Treatment Cooling Exhaust gas Seawater Process tank Holding tank Sludge tank 10 m 3 /MWh (50 m3*) 0.1 m 3 /MWh (50 m3*) 0.1 m 3 /MWh (>50 m3) 1.3 dm 3 /MWh * Values in brackets are related to sea water / open loop based systems for comparison

10 Scrubber Working Principle September 8th, 2011Wärtsilä Dan Veen8 © Wärtsilä

11 Or….gas as a fuel

12 Why natural gas? It is Safe: Narrow ignition area. High ignition temperature (> 500 °C). Slow flame rate in atmospheric pressure. LNG does not burn, it has to evaporate first. It is Clean: No Particulates. 85% lower Nox, 20-30% lower CO 2, no SOx Meets the future Tier3 /CCR4 requirements It is Available: 250 years outlook with current gas reserves. Wärtsilä Dan Veen 10 September 8th, 2011

13 Lower Flammability Level, LFL -Pipe leaks are ventilated, mixture stays too lean for ignition -Storage tanks have a too rich environment for ignition Wärtsilä Dan Veen % of methane in air LFL, 5% methane 50% LFL, 2,5% methane Upper Flammability Limit, 15% Methane 11September 8th, 2011

14 LNG ship - Emissions CO 2 NO X SO X CO 2 -30% NO X -85% SO X -99.9% 12

15 Dual-fuel engine characteristics  High efficiency  Low gas pressure  Low emissions  High efficiency  Clean fuel  Lean-burn combustion  Fuel flexibility  Gas mode:Natural gas + MDO pilot  Diesel mode:MDO + MDO pilot / HFO + MDO pilot  Transfer between modes without loss of power and speed.  Extensive output range  Wärtsilä 20DF:1.0 to 1.6 MW  Wärtsilä 34DF:2.7 to 9.0 MW  Wärtsilä 50DF:5.7 to MW 13 © Wärtsilä

16 Main components – gas fuel supply system Storage tank Bunkering station LNG / gas treatment Gas valve unit DF-engine 14 © Wärtsilä

17 C-type tanks – below deck September 8th, © WärtsiläWärtsilä Dan Veen

18 C-type tanks - Alternative arrangement September 8th, © WärtsiläWärtsilä Dan Veen

19 LNG storage alternatives September 8th, © WärtsiläWärtsilä Dan Veen

20 LNG tank location The LNG tanks are located on the upper deck behind the superstructure –Located outside Good ventilation –No ventilation casing needed trough accommodation –Vent pipe for tanks still needed –Visible location for good PR 18 © Wärtsilä

21 LNG BuSINESS CASE

22 Emission Legislation and Fuel price Slowly increasing awareness Local requirements - mainly PP World Bank 1998 Word Bank 2000 and IMO Tier I IMO fuel S cap in SECA World Bank 2008 Tighter IMO fuel S cap IMO Tier II Tighter IMO fuel S cap IMO Tier III Global tight fuel S cap and CO 2 /CH 4 trading EPA Marine Tier 3 EPA Marine Tier 4 EPA Marine Tier 2 HFO price indication Indication of emission activity level Estimation by Marine and Energy Consulting (IBC 2009) Alternative moderate estimation

23 A typical Baltic Sea cargo ship September 8 th,2011Wärtsilä Dan Veen21 © Wärtsilä TEU container vessel (5000 GT) Propulsion power 3960 kW Source DNV SOxNOxCO2 Particle emissions With LNG fuel: With low-sulphur HFO (LS380 with 1% sulfur): Yearly emissions, tonnes/year

24 A typical Baltic Sea cargo ship 22 © Wärtsilä 22 Typical Baltic Sea cargo ship of approximately 2,700 gross tonnes, 3,300 kW main engine and 5,250 yearly sailing hours. LNG Capex +2,5 Million EUR compared to MGO Scrubber Costs 1 Million EUR Source DNV LNGMGOHFO CAPEXLNG Cryogenic Tank / 2 tanks when mono fuel Gas Valve Units Double Walled Piping Automation SCR (as of 2016)Heater Units Booster Units Scrubbers (as of 2015) SCR (as of 2016) OPEXLower fuel costs Lower cargo capacity (?) Higher Fuel CostsLower fuel costs

25 In the end it all adds up…. 23 © Wärtsilä Source: DNV Baltic Report

26 Business Case Best option varies for every vessel: Time Spend in (S)ECA area Fuel Consumption Remaining vessel lifetime Caustic Soda price Scrubber pricing Conversion costs ……. And Most Important: Fuel Prices September 8th, 2011Wärtsilä Dan Veen24 © Wärtsilä Questions ?


Download ppt "Introductie Dan Veen Van 1991-1996 studeerde Dan Veen Werktuigbouwkunde aan de Hogeschool Utrecht. Na het behalen van zijn diploma heeft hij 4 jaar op."

Similar presentations


Ads by Google