Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Principle of Direct Syntactic Encoding: All grammatical relation changes are lexical.

Similar presentations


Presentation on theme: "The Principle of Direct Syntactic Encoding: All grammatical relation changes are lexical."— Presentation transcript:

1 The Principle of Direct Syntactic Encoding: All grammatical relation changes are lexical

2 Two kinds of movement in transformational grammar:

3 "A' movement" (long-distance phenomena): Disse kakene sa Petter [at Kari mente [ - var gode]]

4 Two kinds of movement in transformational grammar: "A' movement" (long-distance phenomena): Disse kakene sa Petter [at Kari mente [ - var gode]] "A-movement": Rapporten skrives av sekretæren

5 XP VP V NP Configurational analysis of passive Two kinds of movement in transformational grammar: "A' movement" (long-distance phenomena): Disse kakene sa Petter [at Kari mente [ - var gode]] "A-movement": Rapporten skrives av sekretæren

6 XP VP V NP Configurational analysis of passiveRelational analysis of passive active passive R  R S O ( OBL ) S Two kinds of movement in transformational grammar: "A' movement" (long-distance phenomena): Disse kakene sa Petter [at Kari mente [ - var gode]] "A-movement": Rapporten skrives av sekretæren

7 XP NP VP NP   V   ( SUBJ)   ( CF)  The seeming movement under passivization in English is simply a consequence of the configurational assignment of GFs in that language: CF = non-discourse argument functions

8 In a non-configurational language like Malayalam there is no seeming movement under passivization:

9 S NP V kutti aanayeaaraadiccu child.NOMelephant.ACCworship.PAST PRED 'worship '  SUBJ PRED 'child' CASE nom OBJ PRED 'elephant' CASE acc In a non-configurational language like Malayalam there is no seeming movement under passivization:

10 S NP V kuttiyaal aana aaraadhikkappettu child.INSTRelephant.NOMworship.PASS.PAST S NP V kutti aanayeaaraadiccu child.NOMelephant.ACCworship.PAST PRED 'worship '  SUBJ PRED 'child' CASE nom OBJ PRED 'elephant' CASE acc PRED 'worship '  OBLag PRED 'child' CASE instr SUBJ PRED 'elephant' CASE nom In a non-configurational language like Malayalam there is no seeming movement under passivization:

11 The classical LFG passive analysis: A lexical redundancy rule A pattern in the lexicon writeswrite writtenwrite eatseat eateneat buysbuy boughtbuy...

12 The classical LFG passive analysis: A lexical redundancy rule A pattern in the lexicon writeswrite writtenwrite eatseat eateneat buysbuy boughtbuy... Abstracted as a lexical rule: OBJ ⇒ SUBJ SUBJ ⇒ OBLag SUBJ ⇒ 

13 PASS (SCHEMATA) = { SCHEMATA ~(↑PASSIVE)=+ | SCHEMATA (↑PASSIVE)=c + { (↑OBJ) --> (↑SUBJ) | (↑OBL-TH) --> (↑SUBJ) | (↑OBJ-BEN) --> (↑SUBJ) | (↑COMP) --> (↑SUBJ) | (↑XCOMP) --> (↑SUBJ) } { (↑SUBJ) --> (↑OBL-AG) | (↑SUBJ) --> NULL } }. Part of the passive template in a Norwegian computational LFG grammar:

14 PASS (SCHEMATA) = { SCHEMATA ~(↑PASSIVE)=+ | SCHEMATA (↑PASSIVE)=c + { (↑OBJ) --> (↑SUBJ) | (↑OBL-TH) --> (↑SUBJ) | (↑OBJ-BEN) --> (↑SUBJ) | (↑COMP) --> (↑SUBJ) | (↑XCOMP) --> (↑SUBJ) } { (↑SUBJ) --> (↑OBL-AG) | (↑SUBJ) --> NULL } }. Part of the passive template in a Norwegian computational LFG grammar: P [(↑PRED)='P '... ]) Template invocation in a lexical entry P:

15 PASS (SCHEMATA) = { SCHEMATA ~(↑PASSIVE)=+ | SCHEMATA (↑PASSIVE)=c + { (↑OBJ) --> (↑SUBJ) | (↑OBL-TH) --> (↑SUBJ) | (↑OBJ-BEN) --> (↑SUBJ) | (↑COMP) --> (↑SUBJ) | (↑XCOMP) --> (↑SUBJ) } { (↑SUBJ) --> (↑OBL-AG) | (↑SUBJ) --> NULL } }. Part of the passive template in a Norwegian computational LFG grammar: P [(↑PRED)='P '... ]) Template invocation in a lexical entry P:

16 Grammatical Functions TOP FOC SUBJ OBJ OBJ  OBL  COMPL ADJUNCT non-a-fns a-fns

17 Grammatical Functions TOP FOC SUBJ OBJ OBJ  OBL  COMPL ADJUNCT non-a-fns a-fns d-fns

18 Grammatical Functions TOP FOC SUBJ OBJ OBJ  OBL  COMPL ADJUNCT non-a-fns a-fns d-fns non-d-fns

19 Grammatical Functions TOP FOC SUBJ OBJ OBJ  OBL  COMPL ADJUNCT non-a-fns a-fns d-fns non-d-fns

20 XP X' X0X0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, D Basic schema: (Left-to-right order unspecified)

21 XP X' X0X0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, D Basic schema: (Left-to-right order unspecified) Specifier HeadComplement

22 XP X' X0X0 YP ZP LP L' L0L0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema:Lexical projections:

23 XP X' X0X0 YP ZP NP N' N0N0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: Cæsar's conquestof Gallia Lexical projections:

24 XP X' X0X0 YP ZP VP V' V0V0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: Cæsar conqueredGallia Lexical projections:

25 XP X' X0X0 YP ZP VP V0V0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: conqueredGallia Lexical projections:

26 XP X' X0X0 YP ZP AP A0A0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: afraidof dogs Lexical projections:

27 XP X' X0X0 YP ZP P' P0P0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: pastthe border Lexical projections: PP YP three miles

28 XP X' X0X0 YP ZP PP P0P0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, P Basic schema: onthe table Lexical projections:

29 XP X' X0X0 YP ZP LP L' L0L0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema: Functional projections: Lexical projections:

30 XP X' X0X0 YP ZP LP L' L0L0 YP ZP CP C0C0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema: thatMary left Lexical projections: Functional projections:

31 XP X' X0X0 YP ZP LP L' L0L0 YP ZP IP I' I0I0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema: mayleave John Mary Lexical projections: Functional projections:

32 XP X' X0X0 YP ZP LP L' L0L0 YP ZP DP D0D0 ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema: thistheory Lexical projections: Functional projections:

33 XP X' X0X0 YP ZP LP L' L0L0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Adjunction: Lexical projections: Functional projections: XP WP

34 XP X' X0X0 YP ZP LP L' L0L0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema:Lexical projections: Functional projections: Lexical integrity: "Morphological complete words are leaves of the c-structure tree and each leaf corresponds to one and only one c-structure node."

35 XP X' X0X0 YP ZP LP L' L0L0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema:Lexical projections: Functional projections: Economy of Expression: "All syntactic phrase structure nodes are optional and are not used unless required by independent principles (completeness, coherence, semantic expressivity)."

36 XP X' X0X0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema:Example of optionality: Functional projections: Economy of Expression: "All syntactic phrase structure nodes are optional and are not used unless required by independent principles (completeness, coherence, semantic expressivity)." VP V0V0 NP conqueredGallia

37 XP X' X0X0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema:Example of optionality: Functional projections: Economy of Expression: "All syntactic phrase structure nodes are optional and are not used unless required by independent principles (completeness, coherence, semantic expressivity)." VP NP Gallia

38 XP X' X0X0 YP ZP FP F' F0F0 YP ZP X'-syntax X 0 : N, V, A, P, C, I, DL 0 : N, V, A, PF 0 : C, I, D Basic schema:Example of optionality: Functional projections: Economy of Expression: "All syntactic phrase structure nodes are optional and are not used unless required by independent principles (completeness, coherence, semantic expressivity)." VP NP Gallia

39 XP XYP A CB Two kinds of 'heads' c-structure heads (according to X' theory): f-structure heads: XP YPX A CB A CB XP X' X0X0 YP ZP     

40 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections:

41 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads.     

42 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF.       ( DF) 

43 LP L' L0L0 YP ZP IP I' I0I0 NP VP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF.       ( SUBJ)  Example ([SPEC, IP] as SUBJ): mayleave John Mary

44 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads.        ( DF) 

45 LP L' L0L0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads.    IP I' I0I0 NP VP     ( SUBJ)  mayleave John Mary   Example 1 (VP as co-head with I):

46 LP L' L0L0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads.    DP D0D0 NP   thistheory   Example 2 (NP as co-head with D):  

47 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF.        ( CF)   ( DF) 

48 PP P' P0P0 YP DP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF.        ( OBJ)   ( DF)  pastthe border three miles Example 1 (DP as OBJ of P):

49 VP V0V0 CP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF.       ( COMP)   ( DF)  saidthat John left Example 2 (CP as COMP of V):

50 LP L' L0L0 YP ZP FP F' F0F0 YP ZP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF. e.Constituents adjoined to phrasal constituents are nonargument functions AF or not annotated.       ( AF)     ( DF)  LP WP  ( DF)     ( AF)  FP WP  

51 LP L' L0L0 YP ZP IP I' I0I0 NP VP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF. e.Constituents adjoined to phrasal constituents are nonargument functions AF or not annotated.       ( AF)     ( DF)  LP WP  ( SUBJ)    IP AP   Example 1 (preposed adjunct):  ( ADJUNCT)  unfortunately Mary willleave John

52 LP L' L0L0 YP ZP IP I' I0I0 NP VP The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF. e.Constituents adjoined to phrasal constituents are nonargument functions AF or not annotated.       ( AF)     ( DF)  LP WP  ( SUBJ)    IP NP   Example 2 (topicalized object):  ( TOP)  John Mary willleave

53 LP L' L0L0 YP ZP IP DP I The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF. e.Constituents adjoined to phrasal constituents are nonargument functions AF or not annotated.      ( AF)     ( DF)  LP WP  ( SUBJ)    CP C   Example 3 (scrambling in German; GF unannotated by syntax):   daß das Buch der Mannliest

54 LP L' L0L0 YP ZP IP DP I The Mapping Principles Lexical projections:Functional projections: a.C-structure heads are f-structure heads. b.Specifiers of functional categories are the grammaticalized discourse functions DF. c.Complements of functional categories are f-structure co-heads. d.Complements of lexical categories are the nondiscourse argument functions CF. e.Constituents adjoined to phrasal constituents are nonargument functions AF or not annotated.      ( AF)     ( DF)  LP WP  ( SUBJ)    CP C   Example 3 (scrambling in German; GF unannotated by syntax):   daß das Buch der Mannliest OBJ function assigned lexocentrically, conditioned by case. (  CASE)=ACC  ( OBJ)=   

55 Example: Annotations constrained by the mapping principles. IP NP VP    ( SUBJ)    IP AP  ( ADJUNCT)  unfortunately I John CP IP NP C I'      ( COMP)  V believe that Mary leave VP NPV  ( OBJ)    I will      ( SUBJ) 

56 IP NP VP    ( SUBJ)    IP AP  ( ADJUNCT)  unfortunately I John CP IP NP C I'      ( COMP)  V believe that Mary leave VP NPV  ( OBJ)    I will      ( SUBJ)  Example: Annotations constrained by the mapping principles. In this structure the auxiliary and the main verb are members of the same functional domain.

57 IP NP VP    ( SUBJ)    IP AP  ( ADJUNCT)  unfortunately I John CP IP NP C I'      ( COMP)  V believe that Mary leave VP NPV  ( OBJ)    I will      ( SUBJ)  Example: Annotations constrained by the mapping principles. In this structure the auxiliary and the main verb are members of the same functional domain. Hence only one of them can have a PRED. PRED 'leave '  ( PRED)='leave '  COMP... 

58 John IP NP I'   Mary leave VP NPV  ( OBJ)    I will     ( SUBJ)  In English, auxiliaries are in I, and main verbs always in V

59 IP NP I'   Mary not VP ADV  ( ADJUNCT)    I will    ( SUBJ)  Johnleave VP NPV  ( OBJ)     In English, auxiliaries are in I, and main verbs always in V Negation is always before the main verb –

60 IP NP I'   Mary not VP ADV  ( ADJUNCT)    I does    ( SUBJ)  Johnleave VP NPV  ( OBJ)     In English, auxiliaries are in I, and main verbs always in V Negation is always before the main verb – even when there is no semantically required auxiliary.

61 IP NP Mary    ( SUBJ)  Johnleaves VP NPV  ( OBJ)    In English, auxiliaries are in I, and main verbs always in V Negation is always before the main verb – even when there is no semantically required auxiliary. Hence there is no need to assume that finite main verbs are outside VP.

62 IP I S VP   NP   Welsh: a verb-initial language. (Bresnan, after Sproat)    ( SUBJ) 

63 IP I S VP   NP   Welsh: a verb-initial language. (Bresnan, after Sproat)    ( SUBJ)  No specifier of IP, which dominates I and its complement directly.

64 IP I S VP   NP   Welsh: a verb-initial language. (Bresnan, after Sproat)    ( SUBJ)  No specifier of IP, which dominates I and its complement directly. The complement of I is S (not VP), an exocentric phrase.

65 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Auxiliary or main verb may be in I.

66 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Auxiliary or main verb may be in I. In the latter case, the VP doesn't dominate any V head.

67 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Extended Head (Bresnan, Jar, Zaenen, Kaplan) : Given a c-structure containing nodes N, C, and c- to f-structure mapping , N is an extended head of C if N is the minimal node in    C  that c-commands C without dominating C. (A c-commands B if every node properly dominating A also dominates B.)

68 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Extended Head (Bresnan, Jar, Zaenen, Kaplan) : Given a c-structure containing nodes N, C, and c- to f-structure mapping , N is an extended head of C if N is the minimal node in    C  that c-commands C without dominating C. (A c-commands B if every node properly dominating A also dominates B.)    VP 

69 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Extended Head (Bresnan, Jar, Zaenen, Kaplan) : Given a c-structure containing nodes N, C, and c- to f-structure mapping , N is an extended head of C if N is the minimal node in    C  that c-commands C without dominating C. (A c-commands B if every node properly dominating A also dominates B.)    VP 

70 IP I S gwnaeth 'do-3. SG.PAST ' weld 'see' VP V   NP Siôn 'John'   draig 'dragon' NP  ( OBJ)     IP I S gwelodd 'see-3. SG.PAST ' VP   NP Siôn 'John'   ddraig 'dragon' NP  ( OBJ)     ( SUBJ)   Welsh: a verb-initial language. (Bresnan, after Sproat) Extended Head (Bresnan, Jar, Zaenen, Kaplan) : Given a c-structure containing nodes N, C, and c- to f-structure mapping , N is an extended head of C if N is the minimal node in    C  that c-commands C without dominating C. (A c-commands B if every node properly dominating A also dominates B.)    VP 

71 Norwegian: a V2 language.

72 Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks

73 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh).

74 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English).

75 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English).

76 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English).

77 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English). Subordinate clauses: atdeltagerneikkevillelæresyntaks atdeltagerneikkelærersyntaks

78 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English). Subordinate clauses: atdeltagerneikkevillelæresyntaks atdeltagerneikkelærersyntaks Negation and other sentence adverbs occur before the finite verb – main or auxiliary.

79 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English). Subordinate clauses: atdeltagerneikkevillelæresyntaks atdeltagerneikkelærersyntaks Negation and other sentence adverbs occur before the finite verb – main or auxiliary. The subject can only occur before the finite verb.

80 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English). Subordinate clauses: atdeltagerneikkevillelæresyntaks atdeltagerneikkelærersyntaks Negation and other sentence adverbs occur before the finite verb – main or auxiliary. The subject can only occur before the finite verb. Hence the finite verb is always adjacent to its complements: subordinate clauses are not V2.

81 Norwegian: a V2 language. Main declarative clauses: Deltagernevillelæresyntaks Heldigvis villedeltagernelæresyntaks Syntaksvilledeltagernelære Deltagernevilleikkelæresyntaks Deltagernelærerikkesyntaks There is a position before the finite verb (unlike Welsh). There is only one position before the finite verb: No adjunction of adverbs or topics (unlike English). There is a subject position after the finite verb (unlike English). The finite verb – main or auxiliary – is always in the leftmost verbal position, before negation (unlike English). Subordinate clauses: atdeltagerneikkevillelæresyntaks atdeltagerneikkelærersyntaks Negation and other sentence adverbs occur before the finite verb – main or auxiliary. The subject can only occur before the finite verb. Hence the finite verb is always adjacent to its complements: subordinate clauses are not V2. Furthermore: Auxiliaries are fully-fledged, complement taking verbs (unlike English modals).

82 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  Example

83 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  Finite verbs (V[fin]) as head of IP

84 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  Finite verbs (V[fin]) as head of IP S, dominating a SUBJ, as complement of IP

85 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  Finite verbs (V[fin]) as head of IP S, dominating a SUBJ, as complement of IP Since the auxiliary is a complement-taking verb, it (extendedly) heads its own VP.

86 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  PRED 'ville '  SUBJ ADJUNCT PRED 'dessverre' PRED 'ikke' PRED 'deltager' 1 Finite verbs (V[fin]) as head of IP S, dominating a SUBJ, as complement of IP Since the auxiliary is a complement-taking verb, it (extendedly) heads its own VP.

87 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCT PRED 'dessverre' PRED 'ikke' PRED 'deltager' PRED 'syntaks' 1 1 Finite verbs (V[fin]) as head of IP S, dominating a SUBJ, as complement of IP Since the auxiliary is a complement-taking verb, it (extendedly) heads its own VP. The main verb heads the embedded XCOMP.

88 I’ V[fin] S    ( SUBJ)    IP ADV dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)    ( ADJUNCT)

89 I’ V[fin] S    ( SUBJ)    IP ADV dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  SPEC of IP can also host the subject.   ( ADJUNCT)

90 I’ V[fin] S    ( SUBJ)    IP ADV dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  SPEC of IP can also host the subject. Hence two rules in the same functional domain introduce subjects:   ( ADJUNCT)

91 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  SPEC of IP can also host the subject. Hence two rules in the same functional domain introduce subjects:  ( SUBJ)    ( ADJUNCT)...   IP XP I'  S XPADV* VP'   ( SUBJ)      ( ADJUNCT)

92 I’ V[fin] S    ( SUBJ)    IP ADV   ( ADJUNCT) dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  SPEC of IP can also host the subject. Hence two rules in the same functional domain introduce subjects: Functional uniqueness prevents the occurrence of subjects in both positions at once.  ( SUBJ)    ( ADJUNCT)...   IP XP I'  S XPADV* VP'   ( SUBJ)      ( ADJUNCT)

93 I’ V[fin] S    ( SUBJ)    IP ADV dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)    ( ADJUNCT) Subordinate clauses The differing constituent order can be captured based on the same S subtree as in main clauses.

94 I’ V[fin] S    ( SUBJ)    IP ADV dessverre ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)    ( ADJUNCT) Subordinate clauses S  ( SUBJ)  VPNP deltagerne   ADV   ( ADJUNCT) ikke

95 CP C    ( SUBJ)    IP ADV dessverre at fordi hvis... VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)    ( ADJUNCT) Subordinate clauses S  ( SUBJ)  VPNP deltagerne   ADV   ( ADJUNCT) ikke V[fin] S ville   I’ No IP in subordinate clauses: CP takes S as complement.  

96 CP C    ( SUBJ)    IP ADV dessverre at fordi hvis... VPNP deltagerne    ADV   ( ADJUNCT) ikke   ( ADJUNCT) Subordinate clauses S  ( SUBJ)  VPNP deltagerne   ADV   ( ADJUNCT) ikke V[fin] S ville   I’ No IP in subordinate clauses: CP takes S as complement. Consequence: There is no higher head for the VP, and this forces the occurrence of a dominated V head. NP N V    lære syntaks  ( OBJ)  VP  ( XCOMP)   

97 CP C    ( SUBJ)    IP ADV dessverre at fordi hvis... VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)    ( ADJUNCT) Subordinate clauses S  ( SUBJ)  VPNP deltagerne   ADV   ( ADJUNCT) ikke V[fin] S ville   I’ No IP in subordinate clauses: CP takes S as complement. Consequence: There is no higher head for the VP, and this forces the occurrence of a dominated V head. NP N V    lære syntaks  ( OBJ)  VP  ( XCOMP)  V[fin] ville   

98 S in main and subordinate clauses have similar scrambling possibilities: Main: Dessverre vil [ S deltagerne ikke [ VP [ VP lære syntaks]]] Dessverre vil [ S ikke deltagerne [ VP [ VP lære syntaks]]] Subordinate: hvis [ S deltagerne ikke [ VP vil [ VP lære syntaks]]] hvis [ S ikke deltagerne [ VP vil [ VP lære syntaks]]]

99 Main clause word order is also possible in subordinate clauses: Kari sa at hun var ikke syk

100 Main clause word order is also possible in subordinate clauses: Kari sa at hun var ikke syk Hence CP can alternatively take IP as complement: CP CIP

101 Main clause word order is also possible in subordinate clauses: Kari sa at hun var ikke syk Hence CP can alternatively take IP as complement: However, this is difficult unless the speaker can be taken to endorse the proposition expressed by the clause: ??Jeg tviler på at Kari var ikke syk OKJeg tviler på at Kari ikke var syk CP CIP

102 Main clause word order is also possible in subordinate clauses: Kari sa at hun var ikke syk Hence CP can alternatively take IP as complement: However, this is difficult unless the speaker can be taken to endorse the proposition expressed by the clause: ??Jeg tviler på at Kari var ikke syk OKJeg tviler på at Kari ikke var syk This emphasizes the semantic import of the IP domain: IP is the modal core of the sentence; this is where the speech act "happens". CP CIP

103 Long-distance dependencies and Functional Uncertainty

104 I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  The annotationon [SPEC, IP] should be replaced with a set of alternatives to handle topicalization  ( SUBJ)  Topicalization

105 I’ V[fin] S    ( SUBJ)    IP ville VP NP N V    NP deltagerne lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  The annotationon [SPEC, IP] should be replaced with a set of alternatives to handle topicalization. Let us topicalize the object as illustration.  ( SUBJ)  Topicalization

106 I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne The annotationon [SPEC, IP] should be replaced with a set of alternatives to handle topicalization. Let us topicalize the object as illustration.  ( SUBJ) 

107 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne The annotationon [SPEC, IP] should be replaced with a set of alternatives to handle topicalization. Let us topicalize the object as illustration. Will these equations do?  ( SUBJ)   { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

108 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCTPRED 'ikke' PRED 'deltager' PRED 'syntaks'  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC)  2 TOPIC

109 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCTPRED 'ikke' PRED 'deltager' PRED 'syntaks'  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC)  2 TOPIC

110 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCTPRED 'ikke' PRED 'deltager' PRED 'syntaks'  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC)  2 TOPIC

111 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCTPRED 'ikke' PRED 'deltager' PRED 'syntaks' TOPIC  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

112 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne PRED 'lære '   XCOMP SUBJ PRED 'ville '  OBJ SUBJ ADJUNCTPRED 'ikke' PRED 'deltager' PRED 'syntaks' TOPIC  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC)  The equations work for this sentence. But what about the following?

113 [Syntaks lærte deltagerne] [Syntaks sa Kari [at deltagerne ikke lærte]] [Syntaks ville deltagerne [prøve [å lære]]] [Syntaks må da deltagerne [ha [kunnet [ville lære]]]] [Syntaks vil Kari [ha [sagt [at deltagerne ikke kan [ha [villet lære]]]]]]

114 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction?  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

115 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

116 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓ | (↑ XCOMP OBJ)=↓  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

117 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓ | (↑ XCOMP OBJ)=↓ | (↑ COMP OBJ)=↓  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

118 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓ | (↑ XCOMP OBJ)=↓ | (↑ COMP OBJ)=↓ | (↑ XCOMP COMP OBJ)=↓  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

119 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓ | (↑ XCOMP OBJ)=↓ | (↑ COMP OBJ)=↓ | (↑ XCOMP COMP OBJ)=↓ | (↑ COMP XCOMP OBJ)=↓  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

120 Topicalization I’ V[fin] S    IP ville VP V   lære    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP syntaks  ( SUBJ)  NP deltagerne What should we have instead of (↑ XCOMP OBJ)=↓, then? A disjunction? { ( OBJ)=↓ | (↑ XCOMP OBJ)=↓ | (↑ COMP OBJ)=↓ | (↑ XCOMP COMP OBJ)=↓ | (↑ COMP XCOMP OBJ)=↓ | (↑ XCOMP XCOMP COMP OBJ)=↓ |... }  { ( SUBJ)   | ( XCOMP OBJ)   ( TOPIC) 

121 We are faced with an infinite number of alternative strings; OBJ XCOMP OBJ COMP OBJ XCOMP COMP OBJ COMP XCOMP OBJ XCOMP XCOMP COMP OBJ...

122 We are faced with an infinite number of alternative strings; OBJ XCOMP OBJ COMP OBJ XCOMP COMP OBJ COMP XCOMP OBJ XCOMP XCOMP COMP OBJ... SUBJ XCOMP SUBJ COMP SUBJ XCOMP COMP SUBJ COMP XCOMP SUBJ XCOMP XCOMP COMP SUBJ...

123 We are faced with an infinite number of alternative strings; OBJ XCOMP OBJ COMP OBJ XCOMP COMP OBJ COMP XCOMP OBJ XCOMP XCOMP COMP OBJ... SUBJ XCOMP SUBJ COMP SUBJ XCOMP COMP SUBJ COMP XCOMP SUBJ XCOMP XCOMP COMP SUBJ... In other words, we are faced with a language

124 This language is very simple: it consists of all strings that begin with any number og COMPs and XCOMPs (including zero) in any order, and ends with either SUBJ or OBJ..

125 This language is very simple: it consists of all strings that begin with any number og COMPs and XCOMPs (including zero) in any order, and ends with either SUBJ or OBJ. It can be captured by a Regular Expression: { COMP | XCOMP }* {SUBJ | OBJ }.

126 This language is very simple: it consists of all strings that begin with any number og COMPs and XCOMPs (including zero) in any order, and ends with either SUBJ or OBJ. It can be captured by a Regular Expression: { COMP | XCOMP }* {SUBJ | OBJ } This means that it is a Finite State Language, which can be parsed very efficiently.

127 This language is very simple: it consists of all strings that begin with any number og COMPs and XCOMPs (including zero) in any order, and ends with either SUBJ or OBJ. It can be captured by a Regular Expression: { COMP | XCOMP }* {SUBJ | OBJ } This means that it is a Finite State Language, which can be parsed very efficiently. Allowing regular expressions in constraint equations, enables them to specify sets of attribute paths rather than single paths: (↑{ COMP | XCOMP }* {SUBJ | OBJ }) =↓

128 This language is very simple: it consists of all strings that begin with any number og COMPs and XCOMPs (including zero) in any order, and ends with either SUBJ or OBJ. It can be captured by a Regular Expression: { COMP | XCOMP }* {SUBJ | OBJ } This means that it is a Finite State Language, which can be parsed very efficiently. Allowing regular expressions in constraint equations, enables them to specify sets of attribute paths rather than single paths: (↑{ COMP | XCOMP }* {SUBJ | OBJ }) =↓ This constraint equation is satisfied if there is at least one path in the set which maks it true.

129 We can define syntactic variables: COMPFN = {COMP | XCOMP} TERMFN = {SUBJ | OBJ | OBJ  |...} Topicalization I’ V[fin] S    IP ville VP NP N V    lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP deltagerne

130 We can define syntactic variables: COMPFN = {COMP | XCOMP} TERMFN = {SUBJ | OBJ | OBJ  |...} Topicalization I’ V[fin] S    IP ville VP NP N V    lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP deltagerne

131  ( TOP)   ( COMPFN* TERMFN) We can define syntactic variables: COMPFN = {COMP | XCOMP} TERMFN = {SUBJ | OBJ | OBJ  |...} This simplifies the equations Topicalization I’ V[fin] S    IP ville VP NP N V    lære syntaks    ( OBJ)    ADV   ( ADJUNCT) ikke VP  ( XCOMP)  NP deltagerne  COMPFN = {COMP | XCOMP} TERMFN = {SUBJ | OBJ | OBJ  |...}

132 F-structures and Dependency Structures

133 From the PROIEL Project: A sentence from the Gothic Bible (Mark 1.8):

134 From the PROIEL Project: A sentence from the Gothic Bible (Mark 1.8): Norwegian translation: For jeg døper dere i vann, men han døper dere i hellig ånd.

135

136

137

138 ‘PREDs only’ version:

139

140 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' 'for' DISCCOORD-FORM COORD-FORM 'han' 'dere' 'i' PRED The f-structure as a directed graph

141 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

142 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

143 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

144 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

145 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

146 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

147 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

148 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

149 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

150 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' PRED Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

151 PRED ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

152 ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' Label the root of each subgraph with the value of its PRED (if any), and remove the PRED arcs: 'for' DISCCOORD-FORM

153 ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' COORD-FORM 'han' 'dere' 'i' Label still unlabeled roots with the value of COORD-FORM (if any): 'for' DISCCOORD-FORM

154 ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' 'han' 'dere' 'i' Label still unlabeled roots with the value of COORD-FORM (if any): 'for' DISCCOORD-FORM

155 ADJUNCT SUBJ OBJ 'døpe' 'jeg' 'dere' 'i' 'vann' 'hellig' 'ånd' 'men' 'han' 'dere' 'i' 'for' DISCCOORD-FORM Turn it 90 degrees...

156

157 and compare:


Download ppt "The Principle of Direct Syntactic Encoding: All grammatical relation changes are lexical."

Similar presentations


Ads by Google