Download presentation

Presentation is loading. Please wait.

Published byMarco Whitely Modified over 2 years ago

1
Reactive and Potential Field Planners David Johnson

2
Previously Use geometric reasoning to build path in environment –Visibility graphs –Cell decompositions Use robot controls to generate forces to follow path Such complete knowledge of environment is rare May need to react to sensor data

3
A Simple Approach for Unknown Environments Bug algorithms –Highlights the sort of approach needed for simple robots with simple sensors From the text – but find the errata chapter online

4
Bug Algorithms Assumptions: The robot is modeled as a point The obstacles are bounded and are finite The robot senses perfectly its position and can measure traveled distance The robot can perfectly detect contacts and their orientations The robot can compute the direction to the goal and the distance between two points, and has small amount of memory Start Finish

5
Bug-0 Algorithm Bug-0 Repeat: 1.Head toward the goal 2.If the goal is attained then stop 3.If contact is made with an obstacle then follow the obstacles boundary (toward the left) until heading toward the goal is possible again. Start Finish

6
Is Bug-0 Guaranteed to Work? Start Finish Start Finish No!

7
Bug-1 Algorithm Bug-1: Repeat: 1.Head toward the goal 2.If the goal is attained then stop 3.If contact is made with an obstacle then circumnavigate the obstacle (by wall-following), remember the closest point L i to the goal, and return to this point by the shortest wall- following path Start Finish L1L1 L2L2

8

9
Bug-2 Algorithm Bug-2: Repeat: 1.Head toward the goal along the goal-line 2.If the goal is attained then stop 3.If a hit point is reached then follow the obstacles boundary (toward the left) until the goal- line is crossed at a leave point closer to the goal than the previous hit point Start Finish goal-line leave point hit point

10
Start Finish Path Followed by Bug-2?

11
Start Finish Start Finish Bug-2 does better than Bug-1 Bug-1 does better than Bug-2 Which one --- Bug-1 or Bug does better?

12
Bug1 vs. Bug2 Bug1 Exhaustive search Optimal leave point Performs better with complex obstacles Bug2 Opportunistic (greedy) search Performs better with simple obstacles

13
Kinds of sensors for Bug Tactile sensing –Infinite number? Goal beacon –Measure distance through Signal strength Time-of-flight Phase Wheel encoders Orientation

14
Potential Field Planners Can use range information better –Also tangent bug planner in text Can also be used in known environment –Fast –Reactive to local data Rather than –generate forces from path – old approach –generate path from forces!

15
Basic Idea Model physics of robot Attract to goal Repulse from obstacles

16
Basic Idea Originally was described in terms of potentials –Potential energy is energy at a position (or configuration) –integral of force –Force is derivative of potential energy Gradient in higher dimensions

17
Potential Field Path Planning Potential function guides the robot as if it were a particle moving in a gradient field. Analogy: robot is positively charged particle, moving towards negative charge goal Obstacles have repulsive positive charge

18
Potential functions can be viewed as a landscape Robot moves from high-value to low-value Using a downhill path (i.e negative of the gradient). This is known as gradient descent –follow a functional surface until you reach its minimum –Really, an extremum

19

20
What kind of potentials/forces to use? Want to –minimize travel time –have stability at goal –not crash

21
Attract to goal Force is linear with distance –Like the spring force

22
Attractive Potential Field

23
Repulse from Obstacles Use inverse quadratic –1/dist^2 –What is that force law like?

24
Repulsive Potential Field

25
Vector Sum of Two Fields

26
Resulting Robot Trajectory

27
Main Problem

28

29
Some solutions to local minima Build graph from local minima –Search graph Random pertubation to escape –Make sure you dont push into obstacle Change parameters to get unstuck –Might not work Build potential field with only one minimum –Navigation function

30
Rotational and Random Fields Not gradients of potential functions Adding a rotational field around obstacles –Breaks symmetry –Avoids some local minima –Guides robot around groups of obstacles A random field gets the robot unstuck. –Avoids some local minima.

31
Navigation Function N(p) A potential field leading to a given goal, with no local minima to get stuck in. For any point p, N(p) is the minimum cost of any path to the goal. Use a wavefront algorithm, propagating from the goal to the current location. –An active point updates costs of its 8 neighbors. –A point becomes active if its cost decreases. –Continue to the robots current position.

32

33

34

35
Sphere Worlds World in which Navigation Problem is solved –compact, connected subset of E n –boundary formed by disjoint union of finite number of spheres –valid sphere world provided obstacle closures are contained within the workspace

36
MATLAB Simulation Obstacle Target Potential Field Level Curves Kappa = 3

37
Plotting Navigation Function Kappa = 3 Obstacle Target

38
Increase Kappa Kappa = 4

39
Sphere World: 5 Obstacles Kappa = 5.6 No local minima

40
More Advanced Navigation Functions Treat C-space as fluid flow simulation Start is fluid source Goal is fluid sink Run FEA

41
Finding a Path Start at source Trace path along vector field Can have non-point source and sinks New sources are fast to compute

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google