Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 35: Surface Engineering

Similar presentations

Presentation on theme: "Chapter 35: Surface Engineering"— Presentation transcript:

1 Chapter 35: Surface Engineering
DeGarmo’s Materials and Processes in Manufacturing

2 35.1 Introduction

3 Fatigue Strength as a Function of Finish
FIGURE 35-1 Fatigue strength of Inconel 718 components after surface finishing by grinding or EDM. (Field and Kahles, 1971).

4 Surface Profiles FIGURE 35-2 Machining processes produce surface flaws, waviness, and roughness that can influence the performance of the component.

5 Machined Surfaces

6 Machined Surfaces FIGURE 35-3 (a) Terminology used in specifying and measuring surface quality; (b) symbols used on drawing by part designers, with definitions of symbols; (c) lay symbols; (d) lay symbols applied on drawings.

7 Surface Measurement FIGURE 35-4 (a) Schematic of stylus profile device for measuring surface roughness and surface profile with two readout devices shown: a meter for AA or rms values and a strip chart recorder for surface profile. (b) Profile enlarged. (c) Examples of surface profiles.

8 Surface Finish Measurement
FIGURE 35-5 Typical machined steel surface as created by face milling and examined in the SEM. A micrograph (same magnification) of a in. stylus tip has been superimposed at the top.

9 SEM Micrograph FIGURE 35-6 (a) SEM micrograph of a U.S. dime,
showing the S in the word TRUST after the region has been traced by a stylus-type machine. (b) Topographical map of the S region of the word TRUST from a U.S. dime [compare to part (a)].

10 Roughness FIGURE 35-7 Comparison of surface roughness produced by common production processes. (Courtesy of American Machinist.)

11 35.2 Mechanical Cleaning and Finishing Blast Cleaning

12 Finishing Barrel FIGURE 35-8 Schematic of
the blow of material in tumbling or barrel finishing. The parts and media mass typically account for 50 to 60% of capacity.

13 Synthetic Media Geometry
FIGURE 35-9 Synthetic abrasive media are available in a wide variety of sizes and shapes. Through proper selection, the media can be tailored to the product being cleaned

14 Vibration Finishing Tub
FIGURE Schematic diagram of a vibratory-finishing tub loaded with parts and media. The single eccentric shaft drive provides maximum motion at the bottom, which decreases as one moves upward. The dualshaft design produces more uniform motion of the tub and reduces processing time

15 Media to Part Ratio

16 Part Examples FIGURE 35-11 A variety of parts before and after barrel
finishing with triangular-shaped media. (Courtesy of Norton Company.)

17 35.3 Chemical Cleaning

18 35.4 Coatings

19 Organic Finishes

20 Electroplating Processes
FIGURE Basic steps in the electrocoating process

21 Powder Coating

22 Powder Coating Systems
FIGURE A schematic of a powder coating system. The wheels on the color modules permit it to be exchanged with a spare module to obtain the next color.

23 Electroplating Circuitry
FIGURE Basic circuit for an electroplating operation, showing the anode, cathode (workpiece), and electrolyte (conductive solution).

24 Electroplating Design Recomendations
FIGURE Design recommendations for electroplating operations

25 Anodizing FIGURE The anodizing process has many steps.

26 Nickel Carbide Plating
FIGURE (Left) Photomicrograph of nickel carbide plating produced by electroless deposition. Notice the uniform thickness coating on the irregularly shaped product. (Right) High-magnification cross section through the coating. (Courtesy of Electro-Coatings Inc.)

27 35.5 Vaporized Metal Coatings

28 35.6 Clad Materials

29 35.7 Textured Surfaces

30 35.8 Coil-Coated Sheets

31 35.9 Edge Finishing and Burrs

32 Burr Formation FIGURE 35-18 Schematic showing the formation of heavy
burrs on the exit side of a milled slot. (From L. X. Gillespie, American Machinist, November 1985.)

33 Deburring Allowance

34 35.10 Surface Integrity

35 Burr Prevention FIGURE 35-19 Designing
extra recesses and grooves into a part may eliminate the need to deburr. (From L.X. Gillespie, American Machinist, November 1985.)

36 Surface Deformation FIGURE 35-20 Plastic
deformation in the surface layer after cutting. (B. W. Kruszynski and C. W. Cuttervelt, Advanced Manufacturing Engineering, Vol. 1, 1989.)

37 Shot Peening FIGURE (a) Mechanism for formation of residual compressive stresses in surface by cold plastic deformation (shot peening). (b) Hardness increased in surface due to shot peening.

38 Surface Damage as a Function of Rake Angle
FIGURE The depth of damage to the surface of a machined part increases with decreasing rake angle of the cutting tool.

39 Surface Stress FIGURE 35-23 (Top) A
cantilever-loaded (bent) rotating beam, showing the normal distribution of surface stresses (i.e., tension at the top and compression at the bottom). (Center) The residual stresses induced by roller burnishing or shot peening. (Bottom) Net stress pattern obtained when loading a surface-treated beam. The reduced magnitude of the tensile stresses contributes to increased fatigue life.

40 Fatigue Life with Surface Finish
FIGURE Fatigue life of rotating beam 2024-T4 aluminum specimens with a variety of surface-finishing operations. Note the enhanced performance that can be achieved by shot peening and roller burnishing.

Download ppt "Chapter 35: Surface Engineering"

Similar presentations

Ads by Google