Download presentation

Presentation is loading. Please wait.

Published byDenise Groves Modified over 3 years ago

1
1 Chapter 6 The States of Matter 6.8 The Combined Gas Law and Ideal Gas Law

2
2 The combined gas law uses Boyles Law, Charles Law, and Gay-Lussacs Law (n is constant). P 1 V 1 =P 2 V 2 T 1 T 2 Combined Gas Law

3
3 A sample of helium gas has a volume of 0.180 L, a pressure of 0.800 atm and a temperature of 29°C. At what temperature (°C) will the helium have a volume of 90.0 mL and a pressure of 3.20 atm (n is constant)? 1. Set up Data Table Conditions 1Conditions 2 P 1 = 0.800 atm P 2 = 3.20 atm V 1 = 0.180 L (180 mL) V 2 = 90.0 mL T 1 = 29°C + 273 = 302 KT 2 = ?? Combined Gas Law Calculation

4
4 Combined Gas Law Calculation (continued) 2. Solve for T 2 P 1 V 1 =P 2 V 2 T 1 T 2 T 2 = T 1 x P 2 x V 2 P 1 V 1 T 2 = 302 K x 3.20 atm x 90.0 mL = 604 K 0.800 atm 180.0 mL T 2 = 604 K - 273 = 331 °C

5
5 A gas has a volume of 675 mL at 35°C and 0.850 atm pressure. What is the volume(mL) of the gas at -95°C and a pressure of 802 mm Hg (n constant)? Learning Check

6
6 Solution Data Table Conditions 1Conditions 2 T 1 = 308 K T 2 = -95°C + 273 = 178K V 1 = 675 mL V 2 = ??? P 1 = 646 mm Hg P 2 = 802 mm Hg Solve for V 2 V 2 =V 1 x P 1 x T 2 P 2 T 1 V 2 = 675 mL x 646 mm Hg x 178K = 314 mL 802 mm Hg x 308K

7
7 The ideal gas law uses Boyles Law, Charles Law, and Gay-Lussacs Law, and Avogadros Law in a gas sample. PV = nRT R is the universal gas constant that relates pressure, volume, temperature, and number of moles of gas in the ideal gas law. R (gas constant) = 0.0821 L atm mol K Ideal Gas Law

8
8 Learning Check A gas system has pressure, volume and temperature of 1.93 atm, 4.31L and 692.0 o C, respectively. How many moles of gas are present?

9
9 Solution First, organize the data converting the temperature and volume, if needed: P=1.93atm V=4.31L n=?(in moles) T=692.0C=>965K Rearrange the ideal gas equation to solve for the missing quantity PV=nRT=>n=PV/RT Substitute in the given quantities and solve, using the appropriate ideal gas constant and converting the initial result to the desired dimension, as necessary: (1.93*4.31)/(0.0821*965)=0.105moles

10
10 Learning Check A gas system has pressure, moles and temperature of 1.77 atm,0.183 moles and 62.00 o C, respectively. What is the volume in mL?

11
11 Solution First, organize the data converting the temperature and volume, if needed: P=1.77atm V=?(in mL) n=0.183moles T=62.00C=>335K Rearrange the ideal gas equation to solve for the missing quantity PV=nRT=>V=nRT/P Substitute in the given quantities and solve, using the appropriate ideal gas constant and converting the initial result to the desired dimension, as necessary: (0.183*0.0821*335)/1.77=2.84L=>2840mL

Similar presentations

OK

1 Chapter 11 Gases 11.8 The Ideal Gas Law Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.

1 Chapter 11 Gases 11.8 The Ideal Gas Law Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Download simple ppt on global warming Ppt on solar system for class 8th Ppt on american food culture Ppt on wireless intelligent network Ppt on l&t finance holdings Ppt on regional trade agreements notified Ppt on eye osiris Ppt on c language fundamentals pdf Ppt on sports day activities Download ppt on area of circle