Presentation is loading. Please wait.

Presentation is loading. Please wait.

Meso-NH model 30 users laboratories A research model, jointly developped by Meteo-France and Laboratoire dAérologie (CNRS/UPS)

Similar presentations


Presentation on theme: "Meso-NH model 30 users laboratories A research model, jointly developped by Meteo-France and Laboratoire dAérologie (CNRS/UPS)"— Presentation transcript:

1 Meso-NH model 30 users laboratories A research model, jointly developped by Meteo-France and Laboratoire dAérologie (CNRS/UPS)

2 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

3 General description of Meso-NH Anelastic equations with the pseudo-incompressible system of Durran Vertical coordinate following the terrain : (Gal Chen and Sommerville, 1975) Temporal discretization : Purely explicit leap-frog scheme Advection scheme : 2nd order eulerian schemes Spatial discretization : Arakawa C grid Grid nesting : One-way/Two-way Initial fields and LBC (radiative open) from ECMWF/ARPEGE/ALADIN. Turbulence : 1.5 order closure Cuxart-Bougeault-Redelsperger (2000) Convection : Kain-Fritsch (1993) revised by Bechtold et al. (2001) Microphysical scheme : Bulk schemes at 1-moment or 2-moments. Up to 7 prognostic species: vapor (r v ), cloud (r c ), rain (r r ), pristine ice (r i ), snow (r s ), graupel (r g ), hail (r h ) Radiation : ECMWF package Chemical on-line scheme : Gazeous and aerosols (Presentation C.Mari, Thursday) Externalized surface model (Presentation P.Le Moigne, this afternoon) DYNAMICS PHYSICS

4 Types of simulations A broad range of resolution from synoptic scales ( x~10km) to meso-scale ( x~1km) to Large Eddy Simulation ( x~10m) Real cases (from ECMWF, ARPEGE, ALADIN analyses or forecasts)Real cases (from ECMWF, ARPEGE, ALADIN analyses or forecasts) Ideal cases unrealistic casesIdeal cases unrealistic cases - Academic cases (validation of the dynamics) - Basic studies (Diurnal cycle …) : Cloud Resolving Model (CRM) - To reproduce an observed reality (via forcings) (intercomparison : GCSS, EUROCS …) Simulations 3D, 2D, 1D

5 Grid nesting technics At every time step : The Coarse Model (CM) gives the lateral boundary conditions to Fine Model (FM) by interpolation One-way : the FM doesnt influence the CM Two-way : CM fields are relaxed to the average of FM fields A single constraint : an integer ratio between the resolutions and the time steps Same vertical grids.

6 Vaison-la-Romaine : 22 september nested grids : 40/10/2.5km Instantaneous precipitations 2.5km One-wayTwo-way Stein et al., 2000

7 Cumulated precipitations for 9h (Obs=300mm en 6h) One-wayTwo-way Stein et al., km 10km Vaison-la-Romaine : 22 september 1992

8 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

9 Mixed phase cloud representation with a bulk scheme 0°C Mixed phase : Liquid phase : Ice crystals Snowflakes Graupel Hail Cloud droplets Cloud properties = f(,,,,, ) Cloud droplets Raindrops

10 0°C Autoconversion 0°C The different processes Riming Aggregation Collection Deposition Freezing Nucleation Melting Sedimentation

11 MESO-NH Explicit microphysical scheme :

12 Instantaneous precipitation 2.5km 2-way without ICE2-way with ICE Stein et al., 2000

13 Lafore Moncrieff 89 Stratiform Density Current Convective H D A tropical squall line (P.Jabouille) : Idealized simulation according to a real case (COPT81) U W

14 Cloud dropletsRain drops Pristine iceGraupel Snow Jabouille. Caniaux et al., 1994

15 Three contrasted MAP cases IOP 2A Strong Convection IOP 3 Moderate Convection IOP 8 Stratiform rain F.Lascaux and E.Richard, 2005

16 18:00 UT 19:00 UT 20:00 UT Microphysical retrievals : IOP 2A (intense convection) 12 km 100 km Tabary, 2002 (x) hail + graupel (o) hail ( ) rain Z > 60 dBz

17 Radar Retrieval (S-Pol) Simulation (Meso-NH) (x) hail + graupel (o) hail graupel hail 18:00 UT 19:00 UT 20:00 UT rain 12 km 100 km Hydrometeor type (o) hail (x) hail + graupel

18 hail + graupel dry snow rain Pujol et al., 2005 Microphysical retrievals - IOP 3 (moderate convection) 18:10 UT 18:30 UT

19 Microphysical retrievals - IOP 3 (moderate convection) hail + graupel S-Pol retrieval Meso-NH simulation snow rain

20 Microphysical retrievals - IOP 8 (stratiform rain) Meso-NH simulation S-Pol retrieval rain snow melting snow Medina et Houze, 2003

21 Microphysical budgets : Mean vertical distribution of the hydrometeors Lascaux et al., 2005 graupel IOP 2A ice snow hail cloud rain IOP 8 cloud rain snow IOP 3

22 ice rain IOP 2A IOP 3 IOP 8 Microphysical budgets : mean vertical distribution of the different processes

23 max : 135 mm max : 25 mm m mm Quasi-stationnary MCS Oct Cumulated precipitation 01 UTC to 06 UTC the 14 th Oct MESO-NH, x=10km max: 31 mm MESO-NH, x=2.5kmOBSERVATIONS (Ducrocq et al, 2002) Initial conditions: ARPEGE analysis at 18UTC m MESO-NH, x=2.5km Initialisation Ducrocq et al (2000)s max : 99 mm

24 Sensitivity to initial conditions + Nîmes + Observations Nîmes radar Raingauges Initial Conditions : ARPEGE analysis 12UTC, 08/09/02 + MESO-NH (2.5km) 12-h accumulated précipitation from 12 UTC, 8 Sept to 00 UTC, 9 Sept 2002 Gard flash-flood (8-9 Sept.2002) Initial Conditions : Ducrocq et al (2000) Initialisation 12UTC, 08/09/02 + (Ducrocq et al, 2004) Ducrocq V, F.Bouttier Météo-France SRNWP/Met Office/Hirlam workshop on Variational Methods Exeter (UK) Nov 2004

25 TROCCINOX 2005 Chaboureau et al., 2005 Méso-NH Observation Tb 10.8 m Diff m Cirrus Convection Geophysica The approach Model towards Satellite to validate the cloud coverage

26 Stratocumulus : Capped BL When the CBL is blocked by an anticyclonic subsidence FIRE 1 case of EUROCS : Forcing terms : a LS subsidence + cooling (d l /dt 0) under the inversion to balance the subsidence altitude (m) Cloud water mixing ratio (kg/kg) Min = g/kg Max = 0.6 g/kg 0h12h0h12h0h LES simulation of the diurnal cycle ( x=50m) Observations of the base and the top cloud layer Sandu et al., 2006

27 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

28 Simulation of cyclone : case of Dina 7800 km, x=36km 1944 km, x=12km 720 km, x=4km 3600 km Automatic method of Initialization : Filtering/Bogussing Barbary et al.

29 Simulations CEPMMT : trajectoires 22/01/02 00 UTC Barbary et al.

30 Évolution en intensité Barbary et al.

31 Vertical cross-sections at x=4km K m/s K Horizontal wind S-N W-E Barbary et al.

32 Fine scale structure (1 km) le 22 janvier 17h10-17h20-17h30 dBZ s -1 Radar reflectivity Relative vorticity

33 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

34 Lake Town Sea Nature Méso-NH AROME Arpège / Aladin SURFACE EXTERNALIZED SURFACE : Exchange of data flow at each time step between the 2 models Atmosphere forcing Sun position Radiative fluxes albedo emissivity radiative temperature fluxes : Momentum, heat, water vapor, CO2, chemistry Boundary conditions for turbulence and radiative schemes Presentation of P.Le Moigne

35 Set-up : 4 grid-nesting models from regional to city scale, with respective resolutions of 12 km, 3 km, 1 km and 250 m 3D Meso-NH simulations (Lemonsu et al., 2004, 2005) (m) France Mer Mediterranée (m) Mer Mediterranée (m) Marseille Mer Mediterranée (m) Marseille Model 1 Model 2 Model 3 Model 4 Chaine de lEtoile Mont St-Cyr Marseilleveyre Puget N.D. de la Garde Validation of simulations regional at regional scale Validation of simulations urban at urban scale Mediterranean Sea Marseille veyre Massif du Puget City centre

36 Altitude (m) 21 juin 22 juin 23 juin 24 juin 25 juin 26 juin Obs Model Altitude (m) S t Rémy Radiosoundings S t Rémy de Provence Regional validation

37 Thermodynamic structures Urban network Model Air temperature inside the streets 26 June 2001, 1400 UTC Lemonsu et al., 2005a

38 6 m s June 2001, 1400 UTC B C D A TWL B C D A Model VDOL City center Distance (km) VDOL City center Altitude (km) Lemonsu, Bastin et al., 2005b ZS (m) Marseillev eyre 190 o Puget Massif CNRS (Radar) 3 km VAL (Lidar) OBS (Radar) Etoile Massif Comparison with transportable wind lidar (TWL) W

39 VAL OBS CNRS m s -1 Puget Massif Marseille veyre City centre VAL OBS CNRS Puget Massif Marseille veyre City centre z = 400 m AGL z = 50 m AGL West SSB South SSB South- East DSB Atmospheric boundary layer Horizontal wind field 26 June 2001, 1400 UTC

40 Without town Realistic TKE x=1km Simulation on PARIS DAY Lemonsu et Masson (2001)

41 Nocturnal UBL Without town Realistic Lemonsu et Masson (2001)

42 Masson (2001) Formation of fog

43 CarboEurope/RE : modélisation Meso-NH/ISBA-A-gs C.Sarrat et al., CNRM/GMME/MC2 Modelisation of the atmospheric CO2 in interaction with the surface : coupling of CO2 in Meso-NH with CO2 fluxes of ISBA-A-gs Improvement of the exchanges surface-atmosphere Improvement of water cycle/ evapotranspiration Improvement of the PBL representation Regional budget of CO2 atmosphérique Inversion of CO2 concentrations to identify sources/sinks of CO2 (Thèse T. Louvaux) ISBA-A-g s Met. forcing LE, H, Rn, W, Ts… CO 2 Flux [CO 2 ] atm Anthropogenic Sea Meso-NH Surface

44 Modélisation 3-D : Configuration Domaine : France (900x900 km) Résolution horizontale : 10 km Pas de temps : T = 10 s Domaine : Landes (320x250 km) Résolution horizontale : 2.5 km Pas de temps : T = 5 s Nesting 2 ways Surface : ISBA-A-gs (Ecoclimap) Vertical grid : 60 levels ( m)

45 Modélisation 3-D : Résultats RN LE H SFCO2 [CO2]

46 CarboEurope/RE : modelisation Meso- NH/ISBA-A-gs and atmospheric CO2 [CO2] simulated at 15H (june 2001) Advection + Assimilation + vertical mixing [CO2] decrease 00H : Advection + Respiration + cooling [CO2] increase

47 Coupling of Meso-NH with other models (Hydrology, Dispersion)

48 Vidourle Gard Cèze Ardèche TOPMODEL (Beven and Kirkby, 1979) distributed hydrologic model with one model by basin : 9 basins ( km²) Objectives : - Flow and rapide flood forecasts - Retroaction of the hydrology on the atmosphere - Available for AROME HYDROLOGY : Development of the coupling Meso-NH-ISBA-TOPMODEL K.Chancibault et al., CNRM/GMME/MICADO

49 Strategy of the coupling Meso-NH ou Arome ISBA TOPMODEL Module de routage t = 5 min x = 2-3 km L = 1000 km t = 5 min x = 2-3 km L = 1000 km t = 1h x = 50 m L = 1 km W mob flux

50 120km, x=2km 30km, x=500m Dispersion with passive tracers : case of AZF Tulet et Lac (2001)

51 Vertical cross-section 30min after the release the release

52 SPRAY Lagrangian particle model At least particles released Advection+Turbulence+random Applied to the 2 Meso-NH grids PERLE P E R L E PERLE (Programme dEvaluation des Rejets Locaux dEffluents) Dispersion Meso-NH 2 grids (Regional x=8km, L=240km/ Local x=2km, L=60km) 36 levels until 16km ALADIN initialization and coupling Meso-scale meteorology Will be exported to AROME Modelling system for environmental emergency

53 Concentrations à Z=10m Concentrations à Z=800m Méso-NH + SPRAY Temps de réponse= 25min ATC (Atmospheric Transfert Coefficient) = Trajectory of the pollutant cloud Case of AZF

54

55 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

56 Diagnostics Budget (heat, momentum, microphysics species, TKE) with masksBudget (heat, momentum, microphysics species, TKE) with masks Diagnostic fieldsDiagnostic fields Lagrangian trajectories (3 added prognostic fields)Lagrangian trajectories (3 added prognostic fields) Passive tracersPassive tracers Comparison to observations (Meso-NH tools : Presentation of I.Mallet-N.Asencio)Comparison to observations (Meso-NH tools : Presentation of I.Mallet-N.Asencio)

57 z=z-z0 after 30min Orographic convection 17km 270km Gheusi (2003) Growing of a convective cell 10km Total water mixing ratio (vap+liq) Initially at z0=1500m T=14min

58 Gheusi (2003) + Trajectory/Back-trajectory Dynamics of a thalweg Initial height z0 of particles currently at z=7000m Initial latitude y0 of particles currently at =315K

59 Exemple obs2mesonh: T2M

60 Ouest Est Coupe Horizontale K=20 Exemple obs2mesonh: réflectivité radar Ronsard Coupe verticale : modèle + radar dBz Milan

61 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

62 Meso-scale modelling wind climatology

63 An alternative to the measurement = the meteorological models Error of the climatology = Error of the model Measurements at 10m height are used to evaluate the quality of the climatology First solution An operational numerical weather prediction, with an important record : Aladin 5 ans (resolution 0.1°)

64 Methodology only for the mean wind speed (not for extreme winds, or another meteorological field) First step : Statistical selection of weather patterns Classification of weather patterns on 700hPa geopotential of ECMWF reanalyses (résolution 1°, 15 years) 19 classes, with a weight (occurrence) Choice of the dates number 95 dates Choice of the dates : Number of the dates proportional to the frequency Second solution A mesoscale meteorological model ( x=1-3 km), not yet operationnal Second step : Simulation of the selected dates with Meso-NH 95 dates simulated (24h) with ALADIN initial and coupling fields Wind climatology build up with the weighted function of each of the 19 weather patterns Error of the climatology = Error of the model + Error of the statistical sample

65 Vosges, Forêt Noire : 1.2 km Alpes du Nord 2 km Alpes du Sud 2 km Pourtour méditerranéen 3 km Auvergne 2 km Sud-Ouest 3 km Geographical area with Meso-NH wind climatology Limousin 1km Bourgogne 2 km Quiberon 1 km

66 Roses Aladin 3 ansMéso-NH 95 datesMeasurements North Alps

67 Méso-NH 95 dates France (synop) Vosges Alpes du Nord (29 stations) Alpes du Sud (26 stations) Massif Central (67 stations) Sud-Ouest (72 stations) Méditerranéen (99 stations) Obs 95 dates Aladin 3-4 ans

68 Evaluation on Dry Convective boundary layer : CARBOEUROPE La Cape Sud : Comparison Meso- NH/RS of BL height (parcel method) between 6 and 17UTC Weak overestimation during the afternoon Weak underestimation during the morning Forecasts of Meso-NH (8km) in an operational mode during the experiment

69 Examples of Applications of Meso-NH General description of Meso-NHGeneral description of Meso-NH Grid nestingGrid nesting Clouds representation (explicit convective clouds, Sc)Clouds representation (explicit convective clouds, Sc) Cyclones Cyclones Coupling with the surface Coupling with the surface Coupling with other models (hydrology, dispersion) Coupling with other models (hydrology, dispersion) Diagnostics Diagnostics Systematic validations (climatology, real time runs) Systematic validations (climatology, real time runs) Towards AROMETowards AROME

70 AROME : Application of Researh to Operations at MEsoscale Future non-hydrostatic model 2.5km resolution Dynamics based on ALADIN-NH (semi-implicite, semi- lagrangian) Data assimilation ALADIN 3D-VAR Physics based on Méso-NH : microphysics ICE3, Turbulence 1D, shallow convection, externalised surface

71 Arome 60s Case of Gard, initial bogus Lame deau Tu radar de Nîmes > 300 mm Couplage : Aladin 3h Forecasts MésoNH 4s 304 mm 274 mm MésoNH – t= 4s, CPU = 24h20 AROME – t =60s, CPU = 2h30

72 Deep cloudsCirrus cloudsBL clouds : Cu Mainly driven by dynamics. Mixed-phase microphysics Good results with AROME (no excessive W) Depends on convective systems (anvils). Turbulence ice improves the life cycle. Improvement with tuning of microphysics. -The CBR scheme enables to produce BL clouds. Countergradient (TOMs) insufficient. Improvement : Mass-Flux (Siebesman and Soares) -Subgrid condensation with ED+MF contribution Larger cloud fraction. Variety of turbulence and stability profiles - Importance of entrainment. Improvement of Mixing length - Aerosol effects - Transition to BL clouds. Turbulent mixing dominated by large-eddy transport and entrainment at the top. Improvement : Countergradient (TOMs) versus EDMF (Siebesman and Soares) Dry CBLBL clouds : Sc Stable BL and transition to neutral BL. Improvement of Mixing length. Microphysics and aerosols. Fog Improvement of Meso-NH physics for AROME


Download ppt "Meso-NH model 30 users laboratories A research model, jointly developped by Meteo-France and Laboratoire dAérologie (CNRS/UPS)"

Similar presentations


Ads by Google