Presentation is loading. Please wait.

Presentation is loading. Please wait.

Molekulaspektroszkopia segédábrák

Similar presentations


Presentation on theme: "Molekulaspektroszkopia segédábrák"— Presentation transcript:

1 Molekulaspektroszkopia segédábrák
Az ábrák több, részben szerzői jogokkal védett műből, oktatási célra lettek kivéve. Csak az intranetre tehetők, továbbmásolásuk, terjesztésük nem megengedett. Az ábrák csak illusztrációs célokat szolgálnak. Mivel többnyire más szerzők műveiből származnak, olyan jelölések vagy állítások is előfordulhatnak bennük, amelyekkel a tantárgy oktatói nem teljesen értenek egyet.

2

3

4

5

6

7

8 "Heat“ Infrared radiation is popularly known as "heat" or sometimes "heat radiation," since many people attribute all radiant heating to infrared light, but this is a widespread misconception. Light and electromagnetic waves of any frequency will heat surfaces which absorb them. IR light from the sun only accounts for 50% of the heating of the Earth, the rest being caused by visible light. Green (or even UV) lasers can char paper and incandescently hot objects put out visible radiation. However, it is true that objects at room temperature will emit radiation mostly concentrated in the 8-12 micron band (see black body).

9 Die Wellenlänge der Ultraviolettstrahlung reicht von 1 nm bis 380 nm.
Die Frequenz der Ultraviolettstrahlung reicht also von 789 THz (380 nm) bis 300 PHz (1 nm). Die Energie eines einzelnen Lichtquants liegt im Bereich von ca. 3,3 eV (380 nm) bis ca eV (1 nm). 1 eV = 1,602 176 462(63) · 10-19 J Ein typisches Molekül in der Atmosphäre hat eine Bewegungsenergie (thermische Energie) von etwa 0,03 eV. Die Photonen von sichtbarem Licht (rot) haben eine Energie von etwa 2 eV. Boltzman-Konstante 1,38 · J K ,62· 10-5 eV K-1 Plancksches Wirkungsquantum h 4,14 · eV s Die ultraviolette Strahlung wurde 1802 von Johann Wilhelm Ritter entdeckt.

10 Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than soft X-rays. It can be subdivided into near UV (380–200 nm wavelength; abbrev. NUV), far or vacuum UV (200–10 nm; abbrev. FUV or VUV), and extreme UV (1–31 nm; abbrev. EUV or XUV). When considering the effect of UV radiation on human health and the environment, the range of UV wavelengths is often subdivided into UVA (400–315 nm), also called Long Wave or "blacklight"; UVB (315–280 nm), also called Medium Wave; and UVC (< 280 nm), also called Short Wave or "germicidal".

11 Ordinary glass is partially transparent to UVA but is opaque to shorter wavelengths while Silica or quartz glass, depending on quality, can be transparent even to vacuum UV wavelengths. Ordinary window glass passes about 90% of the light above 350 nm, but blocks over 90% of the light below 300 nm[1][2][3]. The onset of vacuum UV, 200 nm, is defined by the fact that ordinary air is opaque below this wavelength. This opacity is due to the strong absorption of light of these wavelengths by oxygen in the air. Pure nitrogen (less than about 10 ppm oxygen) is transparent to wavelengths in the range of about 150–200 nm. This has wide practical significance now that semiconductor manufacturing processes are using wavelengths shorter than 200 nm.

12

13

14 Copyrighted, 1998 - 2006 by Nick Strobel

15 Copyrighted, 1998 - 2006 by Nick Strobel

16 Properties of Electromagnetic Radiation
Fig. 19-1, pg ”Plane-polarized electromagnetic radiation of wavelength l, propagating along the x axis. The electric field of the plane-polarized light is confined to a single plane. Ordinary, unpolarized light has electric field components in all planes."

17 Regions of Electromagnetic Spectrum

18

19

20 Attenuation of Light

21

22

23

24

25

26

27 Grating vs. Prism

28

29

30 Beer's Law Instrumental response
G = KP + K' 100% adjust, incident radiation Go = 100 = KPo K = 100/Po

31 Spectronic 20

32 Double Beam Spectrometer

33 HP 8452a

34

35

36 Components of Optical Instruments
Fig. 7-2, pg. 145 ”(a) Construction materials

37 Components of Optical Instruments
Fig. 7-2, pg. 145 ”(b) wavelength selectors for spectroscopic instruments."

38 Components of Optical Instruments
Fig. 7-3, pg. 146 ”(a) Sources."

39 Components of Optical Instruments
Fig. 7-3, pg. 146 ”(b) detectors for spectroscopic instruments."

40 Properties of Electromagnetic Radiation
Fig. 6-2, pg "Effect of change of medium on a monochromatic beam of radiation."

41 Properties of Electromagnetic Radiation
Fig. 6-3, pg "Regions of the electromagnetic spectrum"

42 Absorption of Radiation
Fig. 6-19, pg.134 "Some typical ultraviolet absorption spectra."

43 Monochromator Slits Construction of slits

44 Total Absorption AT = A1 + A2 + A3 + ··· An AT = e1bc1 + e2bc2 + e3bc3 + ··· enbcn

45 Analysis of Mixtures of Absorbing Substances
Selection of Wavelength Fig , pg. 345 "Absorption spectrum of a two-component mixture."

46 Real Deviations non-monochromatic radiation Fig. 13-4, pg. 305
"Deviations Beer's Law with polychromatic light. Here, two wavelenghts or radiation l1 and l2 have been assumed for which the absorber has the indicated molar absorptivities."

47 Real Deviations Fig. 13-5, pg. 306
"The effect of polychromatic radiation upon the Beer's law relationship. Band A shows little deviation, because e does not change greatly throughout the band. Band B shows marked deviations because e undergoes significant changes in this region."

48 Real Deviations stray light Fig. 13-6, pg. 307
"Apparent deviation from Beer's law brought about by various amounts of stray radiation."

49 Single Beam vs. Double Beam
Fig , pg. 315 "Instrument designs for photometers and spectrophotometers: (a) single-beam design (b) dual channel design with beams separated in space but simultaneous in time (c) double-beam design in which beams alternate between two channels."

50 Types of Transitions Fig. 14-1, pg. 331 "Electron distribution in sigma and pi molecular orbitals."

51 Types of Transitions Fig. 14-2, pg. 331 "Types of molecular orbitals in formaldehyde."

52 Absorbing Species Containing p, s, and n Electrons
Fig. 14-3, pg. 331 "Electonic molecular energy levels." s* Antibonding s* p* p* Antibonding n n n Nonbonding p* s* s p p Bonding s Bonding

53 UV Spectra Fig. 14-4, pg. 334 “Ultraviolet spectra for typical organic compounds.”

54 Visible Spectra Fig. 14-5, pg 334 “Ultraviolet absorption spectra for 1,2,4,5-tetrazine (a.) in the vapor phase, (b.) in hexane solution, and (c.) in aqueous solution.”

55 Types of Transitions Table 14-2, pg. 333 "Aborption Characteristics of Some Common Chromophores."

56 Types of Transitions Table 14-3, pg. 355 "Effect of Multichromophores on Absorption."

57 Interferogram vs. Spectrum

58 Qualitative Analysis Fig. 17-4, pg. 408 Group frequency and fingerprint regions of the mid-infrared spectrum.

59 Qualitative Analysis Fig. 17-4, pg. 408 Group frequency and fingerprint regions of the mid-infrared spectrum.

60 Qualitative Analysis Fig. 17-4, pg. 408 Group frequency and fingerprint regions of the mid-infrared spectrum.

61

62 Vibration Modes Fig. 16-2, pg. 383 “Types of molecular vibrations. Note: + indicates motion from the page toward the reader; - indicates motion away from the reader.”

63 Potential Energy Diagram
Fig. 16-3, pg. 384 “Potential energy diagrams. Curve 1, harmonic oscillator. Curve 2, anharmonic oscillator.”

64 Infrared Sources Most Common IR Sources Nernst glower glowbar
cylinder of rare-earth oxides glowbar silicon carbide rod 50mm long by 5mm diameter incandescent wire nichrome wire

65 Infrared Detectors thermocouples pyroelectrics

66 Table 17-1, pg. 405 Major Applications of Infrared Spectrometry

67 Table 17-1, pg. 405 Major Applications of Infrared Spectrometry

68 Table 17-1, pg. 405 Major Applications of Infrared Spectrometry

69 Table 17-1, pg. 405 Major Applications of Infrared Spectrometry

70 Sample Techniques film smear sample cell gas cell KBr pellet
Nujol mull internal reflectance apparatus

71 Deuterium lamps are gas discharge lamps filled with Deuterium at carefully controlled pressures. They provide a line free continuous UV spectrum from 180nm to 370nm, Tungsten Halogen lamps (TH) are compact gas filled filament lamps that provide a continuum output from 350nm to 1000nm.

72 Emission spectrum of an ultraviolet deuterium arc lamp


Download ppt "Molekulaspektroszkopia segédábrák"

Similar presentations


Ads by Google